|
| 1 | +import argparse |
| 2 | +import sys |
| 3 | +import traceback |
| 4 | +from pathlib import Path |
| 5 | + |
| 6 | +import postprocessing_data as pp |
| 7 | +from inference_tools.loop_tools import loop_inference, get_exec_time |
| 8 | +from io_adapter import IOAdapter |
| 9 | +from io_model_wrapper import IREEModelWrapper |
| 10 | +from reporter.report_writer import ReportWriter |
| 11 | +from transformer import IREETransformer |
| 12 | + |
| 13 | +import numpy as np |
| 14 | + |
| 15 | +sys.path.append(str(Path(__file__).resolve().parents[1].joinpath('utils'))) |
| 16 | +from logger_conf import configure_logger # noqa: E402 |
| 17 | + |
| 18 | +log = configure_logger() |
| 19 | + |
| 20 | +try: |
| 21 | + import iree.runtime as ireert # noqa: E402 |
| 22 | +except ImportError as e: |
| 23 | + log.error(f"IREE import error: {e}") |
| 24 | + sys.exit(1) |
| 25 | + |
| 26 | + |
| 27 | +def cli_argument_parser(): |
| 28 | + parser = argparse.ArgumentParser() |
| 29 | + |
| 30 | + parser.add_argument('-i', '--input', |
| 31 | + help='Path to data.', |
| 32 | + required=True, |
| 33 | + type=str, |
| 34 | + nargs='+', |
| 35 | + dest='input') |
| 36 | + parser.add_argument('-m', '--model', |
| 37 | + help='Path to .vmfb file with compiled model.', |
| 38 | + required=True, |
| 39 | + type=str, |
| 40 | + dest='model') |
| 41 | + parser.add_argument('-in', '--input_name', |
| 42 | + help='IREE module function name to execute.', |
| 43 | + required=True, |
| 44 | + type=str, |
| 45 | + dest='input_name') |
| 46 | + parser.add_argument('-d', '--device', |
| 47 | + help='Specify the target device to infer (CPU by default)', |
| 48 | + default='CPU', |
| 49 | + type=str, |
| 50 | + dest='device') |
| 51 | + parser.add_argument('-is', '--input_shape', |
| 52 | + help='Input shape BxHxWxC, B is a batch size,' |
| 53 | + 'H is an input tensor height,' |
| 54 | + 'W is an input tensor width,' |
| 55 | + 'C is an input tensor number of channels.', |
| 56 | + required=True, |
| 57 | + type=int, |
| 58 | + nargs=4, |
| 59 | + dest='input_shape') |
| 60 | + parser.add_argument('-b', '--batch_size', |
| 61 | + help='Size of the processed pack.' |
| 62 | + 'Should be the same as B in input_shape argument.', |
| 63 | + default=1, |
| 64 | + type=int, |
| 65 | + dest='batch_size') |
| 66 | + parser.add_argument('-l', '--labels', |
| 67 | + help='Labels mapping file.', |
| 68 | + default=None, |
| 69 | + type=str, |
| 70 | + dest='labels') |
| 71 | + parser.add_argument('-nt', '--number_top', |
| 72 | + help='Number of top results.', |
| 73 | + default=5, |
| 74 | + type=int, |
| 75 | + dest='number_top') |
| 76 | + parser.add_argument('-t', '--task', |
| 77 | + help='Task type. Default: feedforward.', |
| 78 | + choices=['feedforward', 'classification'], |
| 79 | + default='feedforward', |
| 80 | + type=str, |
| 81 | + dest='task') |
| 82 | + parser.add_argument('-ni', '--number_iter', |
| 83 | + help='Number of inference iterations.', |
| 84 | + default=1, |
| 85 | + type=int, |
| 86 | + dest='number_iter') |
| 87 | + parser.add_argument('--raw_output', |
| 88 | + help='Raw output without logs.', |
| 89 | + default=False, |
| 90 | + type=bool, |
| 91 | + dest='raw_output') |
| 92 | + parser.add_argument('--time', |
| 93 | + required=False, |
| 94 | + default=0, |
| 95 | + type=int, |
| 96 | + dest='time', |
| 97 | + help='Optional. Maximum test duration. 0 if no restrictions.') |
| 98 | + parser.add_argument('--report_path', |
| 99 | + type=Path, |
| 100 | + default=Path(__file__).parent / 'iree_inference_report.json', |
| 101 | + dest='report_path') |
| 102 | + parser.add_argument('--layout', |
| 103 | + help='Input layout.', |
| 104 | + default='NHWC', |
| 105 | + choices=['NHWC', 'NCHW'], |
| 106 | + type=str, |
| 107 | + dest='layout') |
| 108 | + parser.add_argument('--norm', |
| 109 | + help='Flag to normalize input images.', |
| 110 | + action='store_true', |
| 111 | + dest='norm') |
| 112 | + parser.add_argument('--mean', |
| 113 | + help='Mean values.', |
| 114 | + default=[0, 0, 0], |
| 115 | + type=float, |
| 116 | + nargs=3, |
| 117 | + dest='mean') |
| 118 | + parser.add_argument('--std', |
| 119 | + help='Standard deviation values.', |
| 120 | + default=[1., 1., 1.], |
| 121 | + type=float, |
| 122 | + nargs=3, |
| 123 | + dest='std') |
| 124 | + parser.add_argument('--channel_swap', |
| 125 | + help='Parameter of channel swap.', |
| 126 | + default=[2, 1, 0], |
| 127 | + type=int, |
| 128 | + nargs=3, |
| 129 | + dest='channel_swap') |
| 130 | + |
| 131 | + return parser.parse_args() |
| 132 | + |
| 133 | + |
| 134 | +def load_iree_model(model_path): |
| 135 | + try: |
| 136 | + config = ireert.Config('local-task') |
| 137 | + |
| 138 | + with open(model_path, 'rb') as f: |
| 139 | + vmfb_buffer = f.read() |
| 140 | + |
| 141 | + vm_module = ireert.VmModule.from_flatbuffer(config.vm_instance, vmfb_buffer) |
| 142 | + context = ireert.SystemContext(config=config) |
| 143 | + context.add_vm_module(vm_module) |
| 144 | + |
| 145 | + log.info(f"Successfully loaded IREE model") |
| 146 | + return context |
| 147 | + |
| 148 | + except Exception as e: |
| 149 | + log.error(f"Failed to load IREE model: {e}") |
| 150 | + raise |
| 151 | + |
| 152 | + |
| 153 | +def get_inference_function(model_context, input_name): |
| 154 | + try: |
| 155 | + main_module = model_context.modules.module |
| 156 | + inference_func = main_module[input_name] |
| 157 | + log.info(f"Using function '{input_name}' for inference") |
| 158 | + return inference_func |
| 159 | + |
| 160 | + except Exception as e: |
| 161 | + log.error(f"Failed to get inference function: {e}") |
| 162 | + raise |
| 163 | + |
| 164 | + |
| 165 | +def inference_iree(inference_func, number_iter, batch_size, get_slice, test_duration): |
| 166 | + result = None |
| 167 | + time_infer = [] |
| 168 | + |
| 169 | + if number_iter == 1: |
| 170 | + slice_input = get_slice() |
| 171 | + result, exec_time = infer_slice(inference_func, slice_input) |
| 172 | + time_infer.append(exec_time) |
| 173 | + else: |
| 174 | + time_infer = loop_inference(number_iter, test_duration)( |
| 175 | + inference_iteration |
| 176 | + )(inference_func, get_slice)['time_infer'] |
| 177 | + |
| 178 | + log.info('Inference completed') |
| 179 | + return result, time_infer |
| 180 | + |
| 181 | + |
| 182 | +def inference_iteration(inference_func, get_slice): |
| 183 | + slice_input = get_slice() |
| 184 | + _, exec_time = infer_slice(inference_func, slice_input) |
| 185 | + return exec_time |
| 186 | + |
| 187 | + |
| 188 | +@get_exec_time() |
| 189 | +def infer_slice(inference_func, slice_input): |
| 190 | + config = ireert.Config('local-task') |
| 191 | + device = config.device |
| 192 | + |
| 193 | + input_name = list(slice_input.keys())[0] |
| 194 | + input_data = slice_input[input_name] |
| 195 | + |
| 196 | + input_buffer = ireert.asdevicearray(device, input_data) |
| 197 | + |
| 198 | + result = inference_func(input_buffer) |
| 199 | + |
| 200 | + if hasattr(result, 'to_host'): |
| 201 | + result = result.to_host() |
| 202 | + |
| 203 | + return result |
| 204 | + |
| 205 | + |
| 206 | +def prepare_output(result, task): |
| 207 | + if task == 'feedforward': |
| 208 | + return {} |
| 209 | + elif task == 'classification': |
| 210 | + if hasattr(result, 'to_host'): |
| 211 | + result = result.to_host() |
| 212 | + |
| 213 | + # Extract tensor from dict if needed |
| 214 | + if isinstance(result, dict): |
| 215 | + result_key = next(iter(result)) |
| 216 | + logits = result[result_key] |
| 217 | + output_key = result_key |
| 218 | + else: |
| 219 | + logits = np.array(result) |
| 220 | + output_key = 'output' |
| 221 | + |
| 222 | + # Ensure correct shape (batch_size, num_classes) |
| 223 | + if logits.ndim == 1: |
| 224 | + logits = logits.reshape(1, -1) |
| 225 | + elif logits.ndim > 2: |
| 226 | + logits = logits.reshape(logits.shape[0], -1) |
| 227 | + |
| 228 | + # Apply softmax |
| 229 | + max_logits = np.max(logits, axis=-1, keepdims=True) |
| 230 | + exp_logits = np.exp(logits - max_logits) |
| 231 | + probabilities = exp_logits / np.sum(exp_logits, axis=-1, keepdims=True) |
| 232 | + |
| 233 | + return {output_key: probabilities} |
| 234 | + else: |
| 235 | + raise ValueError(f'Unsupported task {task}') |
| 236 | + |
| 237 | + |
| 238 | +def create_dict_for_transformer(args): |
| 239 | + return { |
| 240 | + 'channel_swap': getattr(args, 'channel_swap'), |
| 241 | + 'mean': getattr(args, 'mean'), |
| 242 | + 'std': getattr(args, 'std'), |
| 243 | + 'norm': getattr(args, 'norm'), |
| 244 | + 'layout': getattr(args, 'layout'), |
| 245 | + 'input_shape': getattr(args, 'input_shape'), |
| 246 | + 'batch_size': getattr(args, 'batch_size'), |
| 247 | + } |
| 248 | + |
| 249 | + |
| 250 | +def main(): |
| 251 | + args = cli_argument_parser() |
| 252 | + |
| 253 | + try: |
| 254 | + model_wrapper = IREEModelWrapper(args) |
| 255 | + data_transformer = IREETransformer(create_dict_for_transformer(args)) |
| 256 | + io = IOAdapter.get_io_adapter(args, model_wrapper, data_transformer) |
| 257 | + |
| 258 | + report_writer = ReportWriter() |
| 259 | + report_writer.update_framework_info(name='IREE') |
| 260 | + report_writer.update_configuration_setup( |
| 261 | + batch_size=args.batch_size, |
| 262 | + iterations_num=args.number_iter, |
| 263 | + target_device=args.device |
| 264 | + ) |
| 265 | + |
| 266 | + model_context = load_iree_model(args.model) |
| 267 | + inference_func = get_inference_function(model_context, args.input_name) |
| 268 | + |
| 269 | + log.info(f'Preparing input data: {args.input}') |
| 270 | + io.prepare_input(model_context, args.input) |
| 271 | + |
| 272 | + log.info(f'Starting inference ({args.number_iter} iterations) on {args.device}') |
| 273 | + result, inference_time = inference_iree( |
| 274 | + inference_func, |
| 275 | + args.number_iter, |
| 276 | + args.batch_size, |
| 277 | + io.get_slice_input, |
| 278 | + args.time |
| 279 | + ) |
| 280 | + |
| 281 | + log.info('Computing performance metrics') |
| 282 | + inference_result = pp.calculate_performance_metrics_sync_mode( |
| 283 | + args.batch_size, |
| 284 | + inference_time |
| 285 | + ) |
| 286 | + |
| 287 | + report_writer.update_execution_results(**inference_result) |
| 288 | + report_writer.write_report(args.report_path) |
| 289 | + |
| 290 | + if not args.raw_output: |
| 291 | + if args.number_iter == 1: |
| 292 | + try: |
| 293 | + log.info('Converting output tensor to print results') |
| 294 | + result = prepare_output(result, args.task) |
| 295 | + log.info('Inference results') |
| 296 | + io.process_output(result, log) |
| 297 | + except Exception as ex: |
| 298 | + log.warning(f'Error when printing inference results: {str(ex)}') |
| 299 | + |
| 300 | + log.info(f'Performance results: {inference_result}') |
| 301 | + |
| 302 | + except Exception: |
| 303 | + log.error(traceback.format_exc()) |
| 304 | + sys.exit(1) |
| 305 | + |
| 306 | + |
| 307 | +if __name__ == '__main__': |
| 308 | + sys.exit(main() or 0) |
0 commit comments