|
40 | 40 | }, |
41 | 41 | { |
42 | 42 | "cell_type": "code", |
43 | | - "execution_count": 2, |
| 43 | + "execution_count": null, |
44 | 44 | "id": "expanded-declaration", |
45 | 45 | "metadata": {}, |
46 | | - "outputs": [ |
47 | | - { |
48 | | - "name": "stdout", |
49 | | - "output_type": "stream", |
50 | | - "text": [ |
51 | | - "scheduler and worker image: public.ecr.aws/w8s1c8b1/lightgbm-dask-testing-cluster-jlamb:py3.12-dask2024.6.2\n" |
52 | | - ] |
53 | | - } |
54 | | - ], |
| 46 | + "outputs": [], |
55 | 47 | "source": [ |
56 | 48 | "import json\n", |
57 | 49 | "import os\n", |
|
79 | 71 | }, |
80 | 72 | { |
81 | 73 | "cell_type": "code", |
82 | | - "execution_count": 3, |
| 74 | + "execution_count": null, |
83 | 75 | "id": "4a10d61c-5251-46a7-9f16-bd6eef606a82", |
84 | 76 | "metadata": {}, |
85 | 77 | "outputs": [], |
86 | 78 | "source": [ |
87 | 79 | "import platform\n", |
| 80 | + "\n", |
88 | 81 | "if platform.machine().lower() in {\"aarch64\", \"arm64\"}:\n", |
89 | | - " cpu_architecture=\"ARM64\"\n", |
| 82 | + " cpu_architecture = \"ARM64\"\n", |
90 | 83 | "else:\n", |
91 | | - " cpu_architecture=\"X86_64\"" |
| 84 | + " cpu_architecture = \"X86_64\"" |
92 | 85 | ] |
93 | 86 | }, |
94 | 87 | { |
|
104 | 97 | "execution_count": null, |
105 | 98 | "id": "respective-collect", |
106 | 99 | "metadata": {}, |
107 | | - "outputs": [ |
108 | | - { |
109 | | - "name": "stderr", |
110 | | - "output_type": "stream", |
111 | | - "text": [ |
112 | | - "/usr/local/lib/python3.12/contextlib.py:144: UserWarning: Creating your cluster is taking a surprisingly long time. This is likely due to pending resources on AWS. Hang tight! \n", |
113 | | - " next(self.gen)\n" |
114 | | - ] |
115 | | - } |
116 | | - ], |
| 100 | + "outputs": [], |
117 | 101 | "source": [ |
118 | 102 | "from dask.distributed import Client\n", |
119 | 103 | "from dask_cloudprovider.aws import FargateCluster\n", |
|
134 | 118 | }, |
135 | 119 | { |
136 | 120 | "cell_type": "code", |
137 | | - "execution_count": 10, |
| 121 | + "execution_count": null, |
138 | 122 | "id": "raising-mauritius", |
139 | 123 | "metadata": {}, |
140 | | - "outputs": [ |
141 | | - { |
142 | | - "name": "stdout", |
143 | | - "output_type": "stream", |
144 | | - "text": [ |
145 | | - "View the dashboard: http://52.55.229.38:8787/status\n" |
146 | | - ] |
147 | | - } |
148 | | - ], |
| 124 | + "outputs": [], |
149 | 125 | "source": [ |
150 | 126 | "print(f\"View the dashboard: {cluster.dashboard_link}\")" |
151 | 127 | ] |
|
174 | 150 | }, |
175 | 151 | { |
176 | 152 | "cell_type": "code", |
177 | | - "execution_count": 11, |
| 153 | + "execution_count": null, |
178 | 154 | "id": "structural-street", |
179 | 155 | "metadata": {}, |
180 | 156 | "outputs": [], |
|
199 | 175 | }, |
200 | 176 | { |
201 | 177 | "cell_type": "code", |
202 | | - "execution_count": 12, |
| 178 | + "execution_count": null, |
203 | 179 | "id": "quiet-nicaragua", |
204 | 180 | "metadata": {}, |
205 | 181 | "outputs": [], |
|
225 | 201 | }, |
226 | 202 | { |
227 | 203 | "cell_type": "code", |
228 | | - "execution_count": 13, |
| 204 | + "execution_count": null, |
229 | 205 | "id": "pleased-brunei", |
230 | 206 | "metadata": {}, |
231 | | - "outputs": [ |
232 | | - { |
233 | | - "ename": "ModuleNotFoundError", |
234 | | - "evalue": "No module named 'lightgbm'", |
235 | | - "output_type": "error", |
236 | | - "traceback": [ |
237 | | - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
238 | | - "\u001b[0;31mModuleNotFoundError\u001b[0m Traceback (most recent call last)", |
239 | | - "Cell \u001b[0;32mIn[13], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mlightgbm\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdask\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DaskLGBMRegressor\n\u001b[1;32m 3\u001b[0m dask_reg \u001b[38;5;241m=\u001b[39m DaskLGBMRegressor(\n\u001b[1;32m 4\u001b[0m client\u001b[38;5;241m=\u001b[39mclient,\n\u001b[1;32m 5\u001b[0m max_depth\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m5\u001b[39m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 10\u001b[0m min_child_samples\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m,\n\u001b[1;32m 11\u001b[0m )\n\u001b[1;32m 13\u001b[0m dask_reg\u001b[38;5;241m.\u001b[39mfit(\n\u001b[1;32m 14\u001b[0m X\u001b[38;5;241m=\u001b[39mdX,\n\u001b[1;32m 15\u001b[0m y\u001b[38;5;241m=\u001b[39mdy,\n\u001b[1;32m 16\u001b[0m )\n", |
240 | | - "\u001b[0;31mModuleNotFoundError\u001b[0m: No module named 'lightgbm'" |
241 | | - ] |
242 | | - } |
243 | | - ], |
| 207 | + "outputs": [], |
244 | 208 | "source": [ |
245 | 209 | "from lightgbm.dask import DaskLGBMRegressor\n", |
246 | 210 | "\n", |
|
0 commit comments