@@ -46,7 +46,8 @@ open import Relation.Binary.PropositionalEquality.Properties as ≡
46
46
using (module ≡-Reasoning )
47
47
open import Relation.Nullary.Decidable as Dec
48
48
using (Dec; _because_; yes; no; _×-dec_; _⊎-dec_; map′)
49
- open import Relation.Nullary.Negation.Core using (¬_; contradiction)
49
+ open import Relation.Nullary.Negation.Core
50
+ using (¬_; contradiction; contradiction-irr)
50
51
open import Relation.Nullary.Reflects using (invert)
51
52
open import Relation.Unary as U
52
53
using (U; Pred; Decidable; _⊆_; Satisfiable; Universal)
@@ -506,15 +507,15 @@ inject!-< {suc n} {suc i} (suc k) = s≤s (inject!-< k)
506
507
-- lower₁
507
508
------------------------------------------------------------------------
508
509
509
- toℕ-lower₁ : ∀ i .(p : n ≢ toℕ i) → toℕ (lower₁ i p ) ≡ toℕ i
510
- toℕ-lower₁ {ℕ.zero} zero 0≢0 = lower₁-¬0≢0 0≢0
510
+ toℕ-lower₁ : ∀ i .(n≢i : n ≢ toℕ i) → toℕ (lower₁ i n≢i ) ≡ toℕ i
511
+ toℕ-lower₁ {ℕ.zero} zero 0≢0 = contradiction-irr refl 0≢0
511
512
toℕ-lower₁ {ℕ.suc m} zero _ = refl
512
513
toℕ-lower₁ {ℕ.suc m} (suc i) ne = cong ℕ.suc (toℕ-lower₁ i (ne ∘ cong ℕ.suc))
513
514
514
515
lower₁-injective : ∀ .{n≢i : n ≢ toℕ i} .{n≢j : n ≢ toℕ j} →
515
516
lower₁ i n≢i ≡ lower₁ j n≢j → i ≡ j
516
- lower₁-injective {zero} {zero} {_} {0≢0} {_} _ = lower₁-¬0≢0 0≢0
517
- lower₁-injective {zero} {_} {zero} {_} {0≢0} _ = lower₁-¬0≢0 0≢0
517
+ lower₁-injective {zero} {zero} {_} {0≢0} {_} _ = contradiction-irr refl 0≢0
518
+ lower₁-injective {zero} {_} {zero} {_} {0≢0} _ = contradiction-irr refl 0≢0
518
519
lower₁-injective {suc n} {zero} {zero} {_} {_} _ = refl
519
520
lower₁-injective {suc n} {suc i} {suc j} {_} {_} eq =
520
521
cong suc (lower₁-injective (suc-injective eq))
@@ -524,7 +525,7 @@ lower₁-injective {suc n} {suc i} {suc j} {_} {_} eq =
524
525
525
526
inject₁-lower₁ : ∀ (i : Fin (suc n)) .(n≢i : n ≢ toℕ i) →
526
527
inject₁ (lower₁ i n≢i) ≡ i
527
- inject₁-lower₁ {zero} zero 0≢0 = lower₁-¬0≢0 0≢0
528
+ inject₁-lower₁ {zero} zero 0≢0 = contradiction-irr refl 0≢0
528
529
inject₁-lower₁ {suc n} zero _ = refl
529
530
inject₁-lower₁ {suc n} (suc i) n+1≢i+1 =
530
531
cong suc (inject₁-lower₁ i (n+1≢i+1 ∘ cong suc))
@@ -541,7 +542,7 @@ lower₁-inject₁ i = lower₁-inject₁′ i (toℕ-inject₁-≢ i)
541
542
542
543
lower₁-irrelevant : ∀ (i : Fin (suc n)) .(n≢i₁ n≢i₂ : n ≢ toℕ i) →
543
544
lower₁ i n≢i₁ ≡ lower₁ i n≢i₂
544
- lower₁-irrelevant {zero} zero 0≢0 _ = lower₁-¬0≢0 0≢0
545
+ lower₁-irrelevant {zero} zero 0≢0 _ = contradiction-irr refl 0≢0
545
546
lower₁-irrelevant {suc n} zero _ _ = refl
546
547
lower₁-irrelevant {suc n} (suc i) _ _ =
547
548
cong suc (lower₁-irrelevant i _ _)
@@ -563,7 +564,7 @@ lower-injective {n = suc n} (suc i) (suc j) eq =
563
564
564
565
lower₁≗lower : ∀ (i : Fin (suc n)) .(n≢i : n ≢ toℕ i) →
565
566
lower₁ i n≢i ≡ lower i (ℕ.≤∧≢⇒< (toℕ≤pred[n]′ i) (n≢i ∘ sym))
566
- lower₁≗lower {n = zero} zero 0≢0 = lower₁-¬0≢0 0≢0
567
+ lower₁≗lower {n = zero} zero 0≢0 = contradiction-irr refl 0≢0
567
568
lower₁≗lower {n = suc _ } zero _ = refl
568
569
lower₁≗lower {n = suc _ } (suc i) ne = cong suc (lower₁≗lower i (ne ∘ cong suc))
569
570
0 commit comments