Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
45 changes: 29 additions & 16 deletions keras/layers/rnn/cudnn_gru.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,23 +152,34 @@ def _process_batch(self, inputs, initial_state):
input_h = initial_state[0]
input_h = tf.expand_dims(input_h, axis=0)


weights = [
self.kernel[:, : self.units],
self.kernel[:, self.units : self.units * 2],
self.kernel[:, self.units * 2 :],
self.recurrent_kernel[:, : self.units],
self.recurrent_kernel[:, self.units : self.units * 2],
self.recurrent_kernel[:, self.units * 2 :],
]

biases = [
self.bias[: self.units],
self.bias[self.units : self.units * 2],
self.bias[self.units * 2 : self.units * 3],
self.bias[self.units * 3 : self.units * 4],
self.bias[self.units * 4 : self.units * 5],
self.bias[self.units * 5 :],
]

if tf.sysconfig.get_build_info()["is_cuda_build"]:
weights[0], weights[1] = weights[1], weights[0]
weights[3], weights[4] = weights[4], weights[3]
biases[0], biases[1] = biases[1], biases[0]
biases[3], biases[4] = biases[4], biases[3]

params = gru_lstm_utils.canonical_to_params(
weights=[
self.kernel[:, self.units : self.units * 2],
self.kernel[:, : self.units],
self.kernel[:, self.units * 2 :],
self.recurrent_kernel[:, self.units : self.units * 2],
self.recurrent_kernel[:, : self.units],
self.recurrent_kernel[:, self.units * 2 :],
],
biases=[
self.bias[self.units : self.units * 2],
self.bias[: self.units],
self.bias[self.units * 2 : self.units * 3],
self.bias[self.units * 4 : self.units * 5],
self.bias[self.units * 3 : self.units * 4],
self.bias[self.units * 5 :],
],
weights=weights,
biases=biases,
shape=self._vector_shape,
)

Expand All @@ -185,13 +196,15 @@ def _process_batch(self, inputs, initial_state):

if self.stateful or self.return_state:
h = h[0]

if self.return_sequences:
if self.time_major:
output = outputs
else:
output = tf.transpose(outputs, perm=(1, 0, 2))
else:
output = outputs[-1]

return output, [h]

def get_config(self):
Expand Down
53 changes: 33 additions & 20 deletions keras/layers/rnn/cudnn_lstm.py
Original file line number Diff line number Diff line change
Expand Up @@ -180,27 +180,38 @@ def _process_batch(self, inputs, initial_state):
input_h = tf.expand_dims(input_h, axis=0)
input_c = tf.expand_dims(input_c, axis=0)

# Prepare weights & biases
weights = [
self.kernel[:, : self.units],
self.kernel[:, self.units : self.units * 2],
self.kernel[:, self.units * 2 : self.units * 3],
self.kernel[:, self.units * 3 :],
self.recurrent_kernel[:, : self.units],
self.recurrent_kernel[:, self.units : self.units * 2],
self.recurrent_kernel[:, self.units * 2 : self.units * 3],
self.recurrent_kernel[:, self.units * 3 :],
]

biases = [
self.bias[: self.units],
self.bias[self.units : self.units * 2],
self.bias[self.units * 2 : self.units * 3],
self.bias[self.units * 3 : self.units * 4],
self.bias[self.units * 4 : self.units * 5],
self.bias[self.units * 5 : self.units * 6],
self.bias[self.units * 6 : self.units * 7],
self.bias[self.units * 7 :],
]

# If on ROCm, reorder weights/biases: [i, f, c, o] -> [i, f, o, c]
if tf.sysconfig.get_build_info()["is_rocm_build"]:
reorder_idx = (0, 1, 3, 2, 4, 5, 7, 6)
weights = [weights[i] for i in reorder_idx]
biases = [biases[i] for i in reorder_idx]

params = gru_lstm_utils.canonical_to_params(
weights=[
self.kernel[:, : self.units],
self.kernel[:, self.units : self.units * 2],
self.kernel[:, self.units * 2 : self.units * 3],
self.kernel[:, self.units * 3 :],
self.recurrent_kernel[:, : self.units],
self.recurrent_kernel[:, self.units : self.units * 2],
self.recurrent_kernel[:, self.units * 2 : self.units * 3],
self.recurrent_kernel[:, self.units * 3 :],
],
biases=[
self.bias[: self.units],
self.bias[self.units : self.units * 2],
self.bias[self.units * 2 : self.units * 3],
self.bias[self.units * 3 : self.units * 4],
self.bias[self.units * 4 : self.units * 5],
self.bias[self.units * 5 : self.units * 6],
self.bias[self.units * 6 : self.units * 7],
self.bias[self.units * 7 :],
],
weights=weights,
biases=biases,
shape=self._vector_shape,
)

Expand All @@ -217,13 +228,15 @@ def _process_batch(self, inputs, initial_state):
if self.stateful or self.return_state:
h = h[0]
c = c[0]

if self.return_sequences:
if self.time_major:
output = outputs
else:
output = tf.transpose(outputs, perm=(1, 0, 2))
else:
output = outputs[-1]

return output, [h, c]

def get_config(self):
Expand Down
Loading