|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "code", |
| 5 | + "id": "initial_id", |
| 6 | + "metadata": { |
| 7 | + "collapsed": true |
| 8 | + }, |
| 9 | + "source": "# !wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt", |
| 10 | + "outputs": [], |
| 11 | + "execution_count": null |
| 12 | + }, |
| 13 | + { |
| 14 | + "metadata": {}, |
| 15 | + "cell_type": "code", |
| 16 | + "source": [ |
| 17 | + "with open('input.txt', 'r', encoding='utf-8') as f:\n", |
| 18 | + " text = f.read()" |
| 19 | + ], |
| 20 | + "id": "3b1e507015ba6b81", |
| 21 | + "outputs": [], |
| 22 | + "execution_count": null |
| 23 | + }, |
| 24 | + { |
| 25 | + "metadata": {}, |
| 26 | + "cell_type": "code", |
| 27 | + "source": [ |
| 28 | + "from transformers import AutoTokenizer\n", |
| 29 | + "\n", |
| 30 | + "tokenizer = AutoTokenizer.from_pretrained(\"gpt2\")\n", |
| 31 | + "\n", |
| 32 | + "tokens = tokenizer.encode(text, add_special_tokens=False)" |
| 33 | + ], |
| 34 | + "id": "ac8e51ae5bbfcae7", |
| 35 | + "outputs": [], |
| 36 | + "execution_count": null |
| 37 | + }, |
| 38 | + { |
| 39 | + "metadata": {}, |
| 40 | + "cell_type": "code", |
| 41 | + "source": [ |
| 42 | + "context_length = 10\n", |
| 43 | + "batch_size = 64" |
| 44 | + ], |
| 45 | + "id": "aeefcdf813e427e", |
| 46 | + "outputs": [], |
| 47 | + "execution_count": null |
| 48 | + }, |
| 49 | + { |
| 50 | + "metadata": {}, |
| 51 | + "cell_type": "code", |
| 52 | + "source": [ |
| 53 | + "num_batches = len(tokens) // (batch_size * context_length)\n", |
| 54 | + "tokens = tokens[:num_batches * batch_size * context_length]" |
| 55 | + ], |
| 56 | + "id": "a384b42274f008a2", |
| 57 | + "outputs": [], |
| 58 | + "execution_count": null |
| 59 | + }, |
| 60 | + { |
| 61 | + "metadata": {}, |
| 62 | + "cell_type": "code", |
| 63 | + "source": [ |
| 64 | + "import torch\n", |
| 65 | + "\n", |
| 66 | + "input_ids = torch.tensor(tokens).view(-1, context_length)" |
| 67 | + ], |
| 68 | + "id": "5c4cc78ac1a02c1d", |
| 69 | + "outputs": [], |
| 70 | + "execution_count": null |
| 71 | + }, |
| 72 | + { |
| 73 | + "metadata": {}, |
| 74 | + "cell_type": "code", |
| 75 | + "source": [ |
| 76 | + "from torch.utils.data import DataLoader, TensorDataset\n", |
| 77 | + "from torch.optim import Adam\n", |
| 78 | + "print(input_ids.shape)\n", |
| 79 | + "dataset = TensorDataset(input_ids)\n", |
| 80 | + "dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)" |
| 81 | + ], |
| 82 | + "id": "7037fd75e2161382", |
| 83 | + "outputs": [], |
| 84 | + "execution_count": null |
| 85 | + }, |
| 86 | + { |
| 87 | + "metadata": {}, |
| 88 | + "cell_type": "code", |
| 89 | + "source": [ |
| 90 | + "from labml_nn.transformers.LoRA.GPT2 import GPTModel\n", |
| 91 | + "\n", |
| 92 | + "model = GPTModel()" |
| 93 | + ], |
| 94 | + "id": "a98b7baa064b8494", |
| 95 | + "outputs": [], |
| 96 | + "execution_count": null |
| 97 | + }, |
| 98 | + { |
| 99 | + "metadata": {}, |
| 100 | + "cell_type": "code", |
| 101 | + "source": [ |
| 102 | + "optimizer = Adam(model.parameters(), lr=5e-5)\n", |
| 103 | + "criterion = torch.nn.CrossEntropyLoss()\n", |
| 104 | + "\n", |
| 105 | + "model.eval()\n", |
| 106 | + "epochs = 3\n", |
| 107 | + "for epoch in range(epochs):\n", |
| 108 | + " for batch in dataloader:\n", |
| 109 | + " inputs = batch[0]\n", |
| 110 | + " labels = inputs.clone()\n", |
| 111 | + " \n", |
| 112 | + " outputs = model(inputs)\n", |
| 113 | + " \n", |
| 114 | + " shift_logits = outputs[..., :-1, :]\n", |
| 115 | + " shift_labels = labels[..., 1:]\n", |
| 116 | + " \n", |
| 117 | + " loss = criterion(shift_logits.reshape(-1, shift_logits.size(-1)), shift_labels.reshape(-1))\n", |
| 118 | + " \n", |
| 119 | + " optimizer.zero_grad()\n", |
| 120 | + " loss.backward()\n", |
| 121 | + " optimizer.step()\n", |
| 122 | + "\n", |
| 123 | + " print(f'Epoch: {epoch + 1}, Loss: {loss.item()}')\n", |
| 124 | + " break\n", |
| 125 | + "\n", |
| 126 | + "print(\"Training complete.\")" |
| 127 | + ], |
| 128 | + "id": "e2f5076894770740", |
| 129 | + "outputs": [], |
| 130 | + "execution_count": null |
| 131 | + }, |
| 132 | + { |
| 133 | + "metadata": {}, |
| 134 | + "cell_type": "code", |
| 135 | + "source": "", |
| 136 | + "id": "da2d4023002648dc", |
| 137 | + "outputs": [], |
| 138 | + "execution_count": null |
| 139 | + } |
| 140 | + ], |
| 141 | + "metadata": { |
| 142 | + "kernelspec": { |
| 143 | + "display_name": "Python (ml)", |
| 144 | + "language": "python", |
| 145 | + "name": "ml" |
| 146 | + }, |
| 147 | + "language_info": { |
| 148 | + "codemirror_mode": { |
| 149 | + "name": "ipython", |
| 150 | + "version": 2 |
| 151 | + }, |
| 152 | + "file_extension": ".py", |
| 153 | + "mimetype": "text/x-python", |
| 154 | + "name": "python", |
| 155 | + "nbconvert_exporter": "python", |
| 156 | + "pygments_lexer": "ipython2", |
| 157 | + "version": "2.7.6" |
| 158 | + } |
| 159 | + }, |
| 160 | + "nbformat": 4, |
| 161 | + "nbformat_minor": 5 |
| 162 | +} |
0 commit comments