|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Sambanova\n", |
| 8 | + "\n", |
| 9 | + "**[Sambanova](https://sambanova.ai/)'s** [Sambaverse](https://sambaverse.sambanova.ai/) and [Sambastudio](https://sambanova.ai/technology/full-stack-ai-platform) are platforms for running your own open source models\n", |
| 10 | + "\n", |
| 11 | + "This example goes over how to use LangChain to interact with Sambanova models" |
| 12 | + ] |
| 13 | + }, |
| 14 | + { |
| 15 | + "cell_type": "markdown", |
| 16 | + "metadata": {}, |
| 17 | + "source": [ |
| 18 | + "## Sambaverse" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "metadata": {}, |
| 24 | + "source": [ |
| 25 | + "**Sambaverse** allows you to interact with multiple Open source models you can se the list of available models an interact with then in the [playground](https://sambaverse.sambanova.ai/playground)" |
| 26 | + ] |
| 27 | + }, |
| 28 | + { |
| 29 | + "cell_type": "markdown", |
| 30 | + "metadata": {}, |
| 31 | + "source": [ |
| 32 | + "An API key is required to access to Sambaverse models get one creating an account in [sambaverse.sambanova.ai](https://sambaverse.sambanova.ai/)\n", |
| 33 | + "\n", |
| 34 | + "The [sseclient-py](https://pypi.org/project/sseclient-py/) package is required to run streaming predictions " |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": null, |
| 40 | + "metadata": {}, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "%pip install --quiet sseclient-py==1.8.0" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "cell_type": "markdown", |
| 48 | + "metadata": {}, |
| 49 | + "source": [ |
| 50 | + "Register your API Key environment variable:" |
| 51 | + ] |
| 52 | + }, |
| 53 | + { |
| 54 | + "cell_type": "code", |
| 55 | + "execution_count": 4, |
| 56 | + "metadata": {}, |
| 57 | + "outputs": [], |
| 58 | + "source": [ |
| 59 | + "import os\n", |
| 60 | + "\n", |
| 61 | + "sambaverse_api_key = \"<Your sambaverse API key>\"\n", |
| 62 | + "\n", |
| 63 | + "# Set the environment variables\n", |
| 64 | + "os.environ[\"SAMBAVERSE_API_KEY\"] = sambaverse_api_key" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "metadata": {}, |
| 70 | + "source": [ |
| 71 | + "Call Sambaverse models directly from langchain!" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "cell_type": "code", |
| 76 | + "execution_count": null, |
| 77 | + "metadata": {}, |
| 78 | + "outputs": [], |
| 79 | + "source": [ |
| 80 | + "from langchain_community.llms.sambanova import Sambaverse\n", |
| 81 | + "\n", |
| 82 | + "llm = Sambaverse(\n", |
| 83 | + " sambaverse_model_name=\"Meta/llama-2-7b-chat-hf\",\n", |
| 84 | + " streaming=False,\n", |
| 85 | + " model_kwargs={\n", |
| 86 | + " \"do_sample\": True,\n", |
| 87 | + " \"max_tokens_to_generate\": 1000,\n", |
| 88 | + " \"temperature\": 0.01,\n", |
| 89 | + " \"process_prompt\": True,\n", |
| 90 | + " \"select_expert\": \"llama-2-7b-chat-hf\",\n", |
| 91 | + " # \"repetition_penalty\": {\"type\": \"float\", \"value\": \"1\"},\n", |
| 92 | + " # \"top_k\": {\"type\": \"int\", \"value\": \"50\"},\n", |
| 93 | + " # \"top_p\": {\"type\": \"float\", \"value\": \"1\"}\n", |
| 94 | + " },\n", |
| 95 | + ")\n", |
| 96 | + "\n", |
| 97 | + "print(llm.invoke(\"Why should I use open source models?\"))" |
| 98 | + ] |
| 99 | + }, |
| 100 | + { |
| 101 | + "cell_type": "markdown", |
| 102 | + "metadata": {}, |
| 103 | + "source": [ |
| 104 | + "## SambaStudio" |
| 105 | + ] |
| 106 | + }, |
| 107 | + { |
| 108 | + "cell_type": "markdown", |
| 109 | + "metadata": {}, |
| 110 | + "source": [ |
| 111 | + "**SambaStudio** allows you to Train, run batch inference jous, and deploy online inference endpoints to run your own fine tunned open source models" |
| 112 | + ] |
| 113 | + }, |
| 114 | + { |
| 115 | + "cell_type": "markdown", |
| 116 | + "metadata": {}, |
| 117 | + "source": [ |
| 118 | + "A SambaStudio environment is required to deploy a model. Get more information in [sambanova.ai/products/enterprise-ai-platform-sambanova-suite](https://sambanova.ai/products/enterprise-ai-platform-sambanova-suite)\n", |
| 119 | + "\n", |
| 120 | + "The [sseclient-py](https://pypi.org/project/sseclient-py/) package is required to run streaming predictions " |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": null, |
| 126 | + "metadata": {}, |
| 127 | + "outputs": [], |
| 128 | + "source": [ |
| 129 | + "%pip install --quiet sseclient-py==1.8.0" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "markdown", |
| 134 | + "metadata": {}, |
| 135 | + "source": [ |
| 136 | + "Register your environment variables:" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": null, |
| 142 | + "metadata": {}, |
| 143 | + "outputs": [], |
| 144 | + "source": [ |
| 145 | + "import os\n", |
| 146 | + "\n", |
| 147 | + "sambastudio_base_url = \"<Your SambaStudio environment URL>\"\n", |
| 148 | + "sambastudio_project_id = \"<Your SambaStudio project id>\"\n", |
| 149 | + "sambastudio_endpoint_id = \"<Your SambaStudio endpoint id>\"\n", |
| 150 | + "sambastudio_api_key = \"<Your SambaStudio endpoint API key>\"\n", |
| 151 | + "\n", |
| 152 | + "# Set the environment variables\n", |
| 153 | + "os.environ[\"SAMBASTUDIO_BASE_URL\"] = sambastudio_base_url\n", |
| 154 | + "os.environ[\"SAMBASTUDIO_PROJECT_ID\"] = sambastudio_project_id\n", |
| 155 | + "os.environ[\"SAMBASTUDIO_ENDPOINT_ID\"] = sambastudio_endpoint_id\n", |
| 156 | + "os.environ[\"SAMBASTUDIO_API_KEY\"] = sambastudio_api_key" |
| 157 | + ] |
| 158 | + }, |
| 159 | + { |
| 160 | + "cell_type": "markdown", |
| 161 | + "metadata": {}, |
| 162 | + "source": [ |
| 163 | + "Call SambaStudio models directly from langchain!" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "code", |
| 168 | + "execution_count": null, |
| 169 | + "metadata": {}, |
| 170 | + "outputs": [], |
| 171 | + "source": [ |
| 172 | + "from langchain_community.llms.sambanova import SambaStudio\n", |
| 173 | + "\n", |
| 174 | + "llm = SambaStudio(\n", |
| 175 | + " streaming=False,\n", |
| 176 | + " model_kwargs={\n", |
| 177 | + " \"do_sample\": True,\n", |
| 178 | + " \"max_tokens_to_generate\": 1000,\n", |
| 179 | + " \"temperature\": 0.01,\n", |
| 180 | + " # \"repetition_penalty\": {\"type\": \"float\", \"value\": \"1\"},\n", |
| 181 | + " # \"top_k\": {\"type\": \"int\", \"value\": \"50\"},\n", |
| 182 | + " # \"top_logprobs\": {\"type\": \"int\", \"value\": \"0\"},\n", |
| 183 | + " # \"top_p\": {\"type\": \"float\", \"value\": \"1\"}\n", |
| 184 | + " },\n", |
| 185 | + ")\n", |
| 186 | + "\n", |
| 187 | + "print(llm.invoke(\"Why should I use open source models?\"))" |
| 188 | + ] |
| 189 | + } |
| 190 | + ], |
| 191 | + "metadata": { |
| 192 | + "kernelspec": { |
| 193 | + "display_name": "Python 3 (ipykernel)", |
| 194 | + "language": "python", |
| 195 | + "name": "python3" |
| 196 | + }, |
| 197 | + "language_info": { |
| 198 | + "codemirror_mode": { |
| 199 | + "name": "ipython", |
| 200 | + "version": 3 |
| 201 | + }, |
| 202 | + "file_extension": ".py", |
| 203 | + "mimetype": "text/x-python", |
| 204 | + "name": "python", |
| 205 | + "nbconvert_exporter": "python", |
| 206 | + "pygments_lexer": "ipython3", |
| 207 | + "version": "3.9.1" |
| 208 | + } |
| 209 | + }, |
| 210 | + "nbformat": 4, |
| 211 | + "nbformat_minor": 4 |
| 212 | +} |
0 commit comments