-
Notifications
You must be signed in to change notification settings - Fork 126
Open
Description
Hi QUIP developer,
I want to use gap_fit to train a GAP mode, here is my input parameter:
#!/bin/bash
#SBATCH --time=71:59:59
#SBATCH --partition=hugemem
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=40
#SBATCH --mem=1400G
#SBATCH --job-name=GAPtrain
module restore myenv
export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
export OMP_STACKSIZE=10000
ulimit -s unlimited
~/software/QUIP/build/linux_x86_64_gfortran_openmp/gap_fit atoms_filename=train.xyz e0={'C':0.0} energy_parameter_name=energy
force_parameter_name=forces virial_parameter_name=virial sparse_jitter=1.0e-8 default_sigma={0.002 0.2 0.2 0.0} do_copy_at_file=F sparse_separate_file=T gp_f
ile=GAP.xml gap={distance_Nb order=2 \
cutoff=5.0 \
covariance_type=ARD_SE \
theta_uniform=1.0 \
n_sparse=20 \
delta=1.0} \The output is below:
Restoring modules from user's myenv
libAtoms::Hello World: 2025-12-13 23:32:33
libAtoms::Hello World: git version https://github.com/libAtoms/QUIP.git,v0.9.14-38-ga4523cb0f-dirty
libAtoms::Hello World: QUIP_ARCH linux_x86_64_gfortran_openmp
libAtoms::Hello World: compiled on Dec 13 2025 at 22:54:35
libAtoms::Hello World: OpenMP parallelisation with 40 threads
libAtoms::Hello World: OMP_STACKSIZE=10000
libAtoms::Hello World: Random Seed = 84753448
libAtoms::Hello World: global verbosity = 0
Calls to system_timer will do nothing by default
================================ Input parameters ==============================
config_file =
atoms_filename = train.xyz
at_file = //MANDATORY//
gap = "distance_Nb order=2 cutoff=5.0 covariance_type=ARD_SE theta_uniform=1.0 n_sparse=20 delta=1.0"
e0 = C:0.0
local_property0 = 0.0
e0_offset = 0.0
e0_method = isolated
default_kernel_regularisation = //MANDATORY//
default_sigma = "0.002 0.2 0.2 0.0"
default_kernel_regularisation_local_property = 0.001
default_local_property_sigma = 0.001
sparse_jitter = 1.0e-8
hessian_displacement = 1.0e-2
hessian_delta = 1.0e-2
baseline_param_filename = quip_params.xml
core_param_file = quip_params.xml
baseline_ip_args =
core_ip_args =
energy_parameter_name = energy
local_property_parameter_name = local_property
force_parameter_name = forces
virial_parameter_name = virial
stress_parameter_name = stress
hessian_parameter_name = hessian
config_type_parameter_name = config_type
kernel_regularisation_parameter_name = sigma
sigma_parameter_name = sigma
force_mask_parameter_name = force_mask
local_property_mask_parameter_name = local_property_mask
parameter_name_prefix =
config_type_kernel_regularisation =
config_type_sigma =
kernel_regularisation_is_per_atom = T
sigma_per_atom = T
do_copy_atoms_file = T
do_copy_at_file = F
sparse_separate_file = T
sparse_use_actual_gpcov = F
gap_file = gap_new.xml
gp_file = GAP.xml
verbosity = NORMAL
rnd_seed = -1
openmp_chunk_size = 0
do_ip_timing = F
template_file = template.xyz
sparsify_only_no_fit = F
dryrun = F
condition_number_norm =
linear_system_dump_file =
mpi_blocksize_rows = 0
mpi_blocksize_cols = 100
mpi_print_all = F
export_covariance = F
======================================== ======================================
============== Gaussian Approximation Potentials - Database fitting ============
Initial parsing of command line arguments finished.
Found 1 GAPs.
Descriptors have been parsed
XYZ file read
Old GAP: {distance_Nb order=2 cutoff=5.0 covariance_type=ARD_SE theta_uniform=1.0 n_sparse=20 delta=1.0}
New GAP: {distance_Nb order=2 cutoff=5.0 covariance_type=ARD_SE theta_uniform=1.0 n_sparse=20 delta=1.0 Z={6 6 }}
Multispecies support added where requested
===================== Report on number of descriptors found ====================
---------------------------------------------------------------------
Descriptor 1: distance_Nb order=2 cutoff=5.0 covariance_type=ARD_SE theta_uniform=1.0 n_sparse=20 delta=1.0 Z={6 6 }
Number of descriptors: 77623148
Number of partial derivatives of descriptors: 1397216664
======================================== ======================================
========================= Memory Estimate (per process) ========================
Descriptors
Descriptor 1 :: x 1 77623148 memory 620 MB
Descriptor 1 :: xPrime 1 1397216664 memory 11 GB
Subtotal 11 GB
Covariances
yY 20 2537171 memory 405 MB * 2
yy 20 20 memory 3200 B
A 20 2537191 memory 405 MB * 2
Subtotal 1623 MB
Peak1 12 GB
Peak2 1623 MB
PEAK 12 GB
Free system memory 1612 GB
Total system memory 1622 GB
======================================== ======================================
========== Report on number of target properties found in training XYZ: ========
Number of target energies (property name: energy) found: 2033
Number of target local_properties (property name: local_property) found: 0
Number of target forces (property name: forces) found: 2522940
Number of target virials (property name: virial) found: 12198
Number of target Hessian eigenvalues (property name: hessian) found: 0
================================= End of report ================================
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Backtrace for this error:
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
Program received signal SIGSEGV: Segmentation fault - invalid memory reference.
Backtrace for this error:
#0 0x15552e315ba0 in ???
#0 0x15552e315ba0 in ???
#1 0x15552e314dd5 in ???
#2 0x15552d79d5af in ???
#3 0x716532 in ???
#4 0x15552f053915 in ???
#5 0x15552db2e1c9 in ???
#6 0x15552d7888d2 in ???
#7 0xffffffffffffffff in ???
/var/spool/slurmd/job30932840/slurm_script: line 24: 3005521 Segmentation fault /software/QUIP/build/linux_x86_64_gfortran_openmp/gap_fit atoms_filename=train.xyz e0={'C':0.0} energy_parameter_name=energy force_parameter_name=forces virial_parameter_name=virial sparse_jitter=1.0e-8 default_sigma={0.002 0.2 0.2 0.0} do_copy_at_file=F sparse_separate_file=T gp_file=GAP.xml gap={distance_Nb order=2 cutoff=5.0 covariance_type=ARD_SE theta_uniform=1.0 n_sparse=20 delta=1.0}Could you help me to solve this problem? Thank you so much. If you need any further information, please let me know.
Metadata
Metadata
Assignees
Labels
No labels