|
19 | 19 |
|
20 | 20 | #include "libmesh/elem.h"
|
21 | 21 | #include "libmesh/face_tri3.h"
|
| 22 | +#include "libmesh/face_tri6.h" |
22 | 23 | #include "libmesh/fe_base.h"
|
23 | 24 | #include "libmesh/fe_interface.h"
|
24 | 25 | #include "libmesh/fem_context.h"
|
@@ -113,90 +114,121 @@ void VariationalSmootherSystem::prepare_for_smoothing()
|
113 | 114 | std::map<ElemType, std::vector<Real>> target_elem_inverse_jacobian_dets;
|
114 | 115 |
|
115 | 116 | for (const auto * elem : mesh.active_local_element_ptr_range())
|
116 |
| - { |
117 |
| - femcontext.pre_fe_reinit(*this, elem); |
118 |
| - femcontext.elem_fe_reinit(); |
119 |
| - |
120 |
| - // Add target element info, if applicable |
121 |
| - if (_target_inverse_jacobians.find(elem->type()) == _target_inverse_jacobians.end()) |
122 | 117 | {
|
123 |
| - // Create FEMap to compute target_element mapping information |
124 |
| - FEMap fe_map_target; |
125 |
| - |
126 |
| - // pre-request mapping derivatives |
127 |
| - const auto & dxyzdxi = fe_map_target.get_dxyzdxi(); |
128 |
| - const auto & dxyzdeta = fe_map_target.get_dxyzdeta(); |
129 |
| - // const auto & dxyzdzeta = fe_map_target.get_dxyzdzeta(); |
| 118 | + femcontext.pre_fe_reinit(*this, elem); |
| 119 | + femcontext.elem_fe_reinit(); |
130 | 120 |
|
131 |
| - const auto & qrule_points = femcontext.get_element_qrule().get_points(); |
132 |
| - const auto & qrule_weights = femcontext.get_element_qrule().get_weights(); |
133 |
| - const auto nq_points = femcontext.get_element_qrule().n_points(); |
134 |
| - |
135 |
| - // If the target element is the reference element, Jacobian matrix is |
136 |
| - // identity, det of inverse is 1. This will only be overwritten if a |
137 |
| - // different target elemen is explicitly specified. |
138 |
| - target_elem_inverse_jacobian_dets[elem->type()] = |
139 |
| - std::vector<Real>(nq_points, 1.0); |
140 |
| - |
141 |
| - switch (elem->type()) |
| 121 | + // Add target element info, if applicable |
| 122 | + if (_target_inverse_jacobians.find(elem->type()) == _target_inverse_jacobians.end()) |
142 | 123 | {
|
143 |
| - case TRI3: |
| 124 | + // Create FEMap to compute target_element mapping information |
| 125 | + FEMap fe_map_target; |
| 126 | + |
| 127 | + // pre-request mapping derivatives |
| 128 | + const auto & dxyzdxi = fe_map_target.get_dxyzdxi(); |
| 129 | + const auto & dxyzdeta = fe_map_target.get_dxyzdeta(); |
| 130 | + // const auto & dxyzdzeta = fe_map_target.get_dxyzdzeta(); |
| 131 | + |
| 132 | + const auto & qrule_points = femcontext.get_element_qrule().get_points(); |
| 133 | + const auto & qrule_weights = femcontext.get_element_qrule().get_weights(); |
| 134 | + const auto nq_points = femcontext.get_element_qrule().n_points(); |
| 135 | + |
| 136 | + // If the target element is the reference element, Jacobian matrix is |
| 137 | + // identity, det of inverse is 1. This will only be overwritten if a |
| 138 | + // different target elemen is explicitly specified. |
| 139 | + target_elem_inverse_jacobian_dets[elem->type()] = |
| 140 | + std::vector<Real>(nq_points, 1.0); |
| 141 | + |
| 142 | + // Elems deriving from Tri |
| 143 | + if (elem->type() == TRI3 || elem->type() == TRI6) |
144 | 144 | {
|
145 |
| - // Build target element: an equilateral triangle |
146 |
| - Tri3 target_elem; |
147 | 145 |
|
148 |
| - // equilateral triangle side length that preserves area of reference |
149 |
| - // element |
| 146 | + // The target element will be an equilateral triangle with area equal to |
| 147 | + // the area of the reference element. |
| 148 | + |
| 149 | + // First, let's define the nodal locations of the vertices |
150 | 150 | const Real sqrt_3 = std::sqrt(3.);
|
151 |
| - const auto ref_volume = target_elem.reference_elem()->volume(); |
152 |
| - const auto s = std::sqrt(4. / sqrt_3 * ref_volume); |
| 151 | + |
| 152 | + std::vector<Point> equilateral_points{ |
| 153 | + Point(0., 0.), |
| 154 | + Point(1., 0.), |
| 155 | + Point(0.5, 0.5 * sqrt_3) |
| 156 | + }; |
| 157 | + |
| 158 | + // Target element |
| 159 | + const auto target_elem = Elem::build(elem->type()); |
| 160 | + |
| 161 | + // Area of the reference element |
| 162 | + const auto ref_area = target_elem->reference_elem()->volume(); |
| 163 | + |
| 164 | + switch (elem->type()) |
| 165 | + { |
| 166 | + case TRI3: |
| 167 | + { |
| 168 | + // Nothing to do here, vertices already defined in equilateral_points |
| 169 | + break; |
| 170 | + } |
| 171 | + |
| 172 | + case TRI6: |
| 173 | + { |
| 174 | + // Define the midpoint nodes of the equilateral triangle |
| 175 | + equilateral_points.emplace_back(0.50, 0. ); |
| 176 | + equilateral_points.emplace_back(0.75, 0.25 * sqrt_3); |
| 177 | + equilateral_points.emplace_back(0.25, 0.25 * sqrt_3); |
| 178 | + |
| 179 | + break; |
| 180 | + } |
| 181 | + |
| 182 | + default: |
| 183 | + libmesh_error_msg("Unsupported triangular element!"); |
| 184 | + break; |
| 185 | + } |
| 186 | + |
| 187 | + // Equilateral triangle side length preserving area of the reference element |
| 188 | + const auto side_length = std::sqrt(4. / sqrt_3 * ref_area); |
| 189 | + |
| 190 | + std::vector<std::unique_ptr<Node>> owned_nodes; |
153 | 191 |
|
154 | 192 | // Set nodes of target element to form an equilateral triangle
|
155 |
| - Node node_0 = Node(0., 0.); |
156 |
| - Node node_1 = Node(s, 0.); |
157 |
| - Node node_2 = Node(0.5 * s, 0.5 * s * sqrt_3); |
158 |
| - target_elem.set_node(0, &node_0); |
159 |
| - target_elem.set_node(1, &node_1); |
160 |
| - target_elem.set_node(2, &node_2); |
| 193 | + for (const dof_id_type node_id : index_range(equilateral_points)) |
| 194 | + { |
| 195 | + // Scale the nodal positions to conserve area, store the pointer to keep it alive |
| 196 | + owned_nodes.emplace_back( |
| 197 | + Node::build(equilateral_points[node_id] * side_length, node_id)); |
| 198 | + target_elem->set_node(node_id, owned_nodes.back().get()); |
| 199 | + } |
161 | 200 |
|
162 | 201 | // build map
|
163 |
| - fe_map_target.init_reference_to_physical_map(dim, qrule_points, |
164 |
| - &target_elem); |
165 |
| - fe_map_target.compute_map(dim, qrule_weights, &target_elem, |
166 |
| - /*d2phi=*/false); |
| 202 | + fe_map_target.init_reference_to_physical_map(dim, qrule_points, target_elem.get()); |
| 203 | + fe_map_target.compute_map(dim, qrule_weights, target_elem.get(), /*d2phi=*/false); |
167 | 204 |
|
168 | 205 | // Yes, triangle-to-triangle mappings have constant Jacobians, but we
|
169 | 206 | // will keep things general for now
|
170 |
| - _target_inverse_jacobians[target_elem.type()] = |
| 207 | + _target_inverse_jacobians[target_elem->type()] = |
171 | 208 | std::vector<RealTensor>(nq_points);
|
172 | 209 | for (const auto qp : make_range(nq_points))
|
173 |
| - { |
174 |
| - const RealTensor H_inv = |
175 |
| - RealTensor(dxyzdxi[qp](0), dxyzdeta[qp](0), 0, dxyzdxi[qp](1), |
176 |
| - dxyzdeta[qp](1), 0, 0, 0, 1) |
177 |
| - .inverse(); |
178 |
| - |
179 |
| - _target_inverse_jacobians[target_elem.type()][qp] = H_inv; |
180 |
| - target_elem_inverse_jacobian_dets[target_elem.type()][qp] = |
181 |
| - H_inv.det(); |
182 |
| - } |
183 |
| - |
184 |
| - break; |
185 |
| - } |
186 |
| - |
187 |
| - default: |
188 |
| - break; |
189 |
| - } |
190 |
| - } |
191 |
| - |
192 |
| - Real elem_integrated_det_J(0.); |
193 |
| - for (const auto qp : index_range(JxW)) |
194 |
| - elem_integrated_det_J += |
195 |
| - JxW[qp] * target_elem_inverse_jacobian_dets[elem->type()][qp]; |
196 |
| - const auto ref_elem_vol = elem->reference_elem()->volume(); |
197 |
| - elem_averaged_det_J_sum += elem_integrated_det_J / ref_elem_vol; |
198 |
| - |
199 |
| - } // for elem |
| 210 | + { |
| 211 | + const RealTensor H_inv = |
| 212 | + RealTensor(dxyzdxi[qp](0), dxyzdeta[qp](0), 0, dxyzdxi[qp](1), |
| 213 | + dxyzdeta[qp](1), 0, 0, 0, 1) |
| 214 | + .inverse(); |
| 215 | + |
| 216 | + _target_inverse_jacobians[target_elem->type()][qp] = H_inv; |
| 217 | + target_elem_inverse_jacobian_dets[target_elem->type()][qp] = |
| 218 | + H_inv.det(); |
| 219 | + } |
| 220 | + }// if Tri |
| 221 | + }// if find == end() |
| 222 | + |
| 223 | + // Reference volume computation |
| 224 | + Real elem_integrated_det_J = 0.; |
| 225 | + for (const auto qp : index_range(JxW)) |
| 226 | + elem_integrated_det_J += |
| 227 | + JxW[qp] * target_elem_inverse_jacobian_dets[elem->type()][qp]; |
| 228 | + const auto ref_elem_vol = elem->reference_elem()->volume(); |
| 229 | + elem_averaged_det_J_sum += elem_integrated_det_J / ref_elem_vol; |
| 230 | + |
| 231 | + } // for elem |
200 | 232 |
|
201 | 233 | // Get contributions from elements on other processors
|
202 | 234 | mesh.comm().sum(elem_averaged_det_J_sum);
|
@@ -395,7 +427,7 @@ bool VariationalSmootherSystem::element_time_derivative (bool request_jacobian,
|
395 | 427 | const Real chi_prime = 0.5 * (1. + det / sqrt_term);
|
396 | 428 | const Real chi_prime_sq = chi_prime * chi_prime;
|
397 | 429 | // d2chi(x) / dx2
|
398 |
| - const Real chi_2prime = 0.5 * (1. / sqrt_term - det_sq / std::pow(sqrt_term, 3)); |
| 430 | + const Real chi_2prime = 0.5 * (1. / sqrt_term - det_sq / Utility::pow<3>(sqrt_term)); |
399 | 431 |
|
400 | 432 | // Distortion metric (beta)
|
401 | 433 | //const Real beta = trace_powers[0] / chi;
|
|
0 commit comments