diff --git a/llvm/lib/Analysis/ScalarEvolution.cpp b/llvm/lib/Analysis/ScalarEvolution.cpp index 477e4771e04aa..c8e90dc1d73da 100644 --- a/llvm/lib/Analysis/ScalarEvolution.cpp +++ b/llvm/lib/Analysis/ScalarEvolution.cpp @@ -5092,9 +5092,29 @@ ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { } if (!AR->hasNoUnsignedWrap()) { - ConstantRange AddRecRange = getUnsignedRange(AR); - ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); - + const SCEVAddRecExpr *NewAR = AR; + unsigned BitWidth = getTypeSizeInBits(AR->getType()); + // For integer AddRecs, try to evaluate the AddRec in a type one bit wider + // than the original type, to be able to differentiate between the AddRec + // hitting the full range or wrapping. + const SCEV *Step = AR->getStepRecurrence(*this); + if (AR->getType()->isIntegerTy() && isKnownNonNegative(Step)) { + Type *WiderTy = IntegerType::get(getContext(), BitWidth + 1); + NewAR = cast( + getAddRecExpr(getSignExtendExpr(AR->getStart(), WiderTy), + getZeroExtendExpr(Step, WiderTy), AR->getLoop(), + AR->getNoWrapFlags())); + ConstantRange AddRecRange = getUnsignedRange(NewAR); + // If the wider AddRec range matches the original range after stripping + // the top bit, the original AddRec does not self-wrap. + if (AddRecRange != + AddRecRange.truncate(BitWidth).zeroExtend(BitWidth + 1)) + NewAR = AR; + } + ConstantRange AddRecRange = getUnsignedRange(NewAR); + ConstantRange IncRange = getUnsignedRange(Step); + if (NewAR != AR) + IncRange = IncRange.zeroExtend(getTypeSizeInBits(NewAR->getType())); auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( Instruction::Add, IncRange, OBO::NoUnsignedWrap); if (NUWRegion.contains(AddRecRange)) @@ -8336,7 +8356,13 @@ const SCEV *ScalarEvolution::getPredicatedExitCount( const SCEV *ScalarEvolution::getPredicatedBackedgeTakenCount( const Loop *L, SmallVectorImpl &Preds) { - return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); + auto *Res = getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); + if (!isa(Res) && Preds.empty()) { + auto I = BackedgeTakenCounts.find(L); + if (I != BackedgeTakenCounts.end() && !I->second.isComplete()) + BackedgeTakenCounts.erase(I); + } + return Res; } const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, @@ -13858,7 +13884,8 @@ static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, SmallVector Preds; auto *PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); if (PBT != BTC) { - assert(!Preds.empty() && "Different predicated BTC, but no predicates"); + assert((!Preds.empty() || PBT == SE->getBackedgeTakenCount(L)) && + "Different predicated BTC, but no predicates"); OS << "Loop "; L->getHeader()->printAsOperand(OS, /*PrintType=*/false); OS << ": "; @@ -13877,7 +13904,8 @@ static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, auto *PredConstantMax = SE->getPredicatedConstantMaxBackedgeTakenCount(L, Preds); if (PredConstantMax != ConstantBTC) { - assert(!Preds.empty() && + assert((!Preds.empty() || + PredConstantMax == SE->getConstantMaxBackedgeTakenCount(L)) && "different predicated constant max BTC but no predicates"); OS << "Loop "; L->getHeader()->printAsOperand(OS, /*PrintType=*/false); @@ -13897,7 +13925,8 @@ static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, auto *PredSymbolicMax = SE->getPredicatedSymbolicMaxBackedgeTakenCount(L, Preds); if (SymbolicBTC != PredSymbolicMax) { - assert(!Preds.empty() && + assert((!Preds.empty() || + PredSymbolicMax == SE->getSymbolicMaxBackedgeTakenCount(L)) && "Different predicated symbolic max BTC, but no predicates"); OS << "Loop "; L->getHeader()->printAsOperand(OS, /*PrintType=*/false); diff --git a/llvm/test/Analysis/ScalarEvolution/exit-count-non-strict.ll b/llvm/test/Analysis/ScalarEvolution/exit-count-non-strict.ll index 1e15d2d0d6461..0d19ed96d19a6 100644 --- a/llvm/test/Analysis/ScalarEvolution/exit-count-non-strict.ll +++ b/llvm/test/Analysis/ScalarEvolution/exit-count-non-strict.ll @@ -153,7 +153,6 @@ define void @ule_from_zero_no_nuw(i32 %M, i32 %N) { ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: exit count for latch: %N ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 @@ -161,18 +160,15 @@ define void @ule_from_zero_no_nuw(i32 %M, i32 %N) { ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated symbolic max exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: symbolic max exit count for latch: %N ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: +; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop @@ -198,7 +194,6 @@ define void @le_from_zero_no_nuw(i32 %M, i32 %N) { ; CHECK-NEXT: exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: exit count for latch: %N ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i32 -1 @@ -206,18 +201,15 @@ define void @le_from_zero_no_nuw(i32 %M, i32 %N) { ; CHECK-NEXT: symbolic max exit count for loop: ***COULDNOTCOMPUTE*** ; CHECK-NEXT: predicated symbolic max exit count for loop: (1 + (zext i32 %M to i64)) ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-EMPTY: ; CHECK-NEXT: symbolic max exit count for latch: %N ; CHECK-NEXT: Loop %loop: Predicated backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated constant max backedge-taken count is i64 4294967295 ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: ; CHECK-NEXT: Loop %loop: Predicated symbolic max backedge-taken count is ((zext i32 %N to i64) umin (1 + (zext i32 %M to i64))) ; CHECK-NEXT: Predicates: -; CHECK-NEXT: {0,+,1}<%loop> Added Flags: +; CHECK-NEXT: Loop %loop: Trip multiple is 1 ; entry: br label %loop diff --git a/llvm/test/Analysis/ScalarEvolution/exit-count-select-safe.ll b/llvm/test/Analysis/ScalarEvolution/exit-count-select-safe.ll index 1043b2f6f56f6..df97d0b1d4d68 100644 --- a/llvm/test/Analysis/ScalarEvolution/exit-count-select-safe.ll +++ b/llvm/test/Analysis/ScalarEvolution/exit-count-select-safe.ll @@ -5,9 +5,9 @@ define i32 @logical_and_2ops(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_2ops' ; CHECK-NEXT: Classifying expressions for: @logical_and_2ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_2ops @@ -33,9 +33,9 @@ define i32 @logical_or_2ops(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_or_2ops' ; CHECK-NEXT: Classifying expressions for: @logical_or_2ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_or_2ops @@ -61,9 +61,9 @@ define i32 @logical_and_3ops(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_and_3ops' ; CHECK-NEXT: Classifying expressions for: @logical_and_3ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 %cond_p2, i1 false @@ -93,9 +93,9 @@ define i32 @logical_or_3ops(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p3, i1 true, i1 %cond_p2 @@ -125,9 +125,9 @@ define i32 @logical_or_3ops_duplicate(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_duplicate' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_duplicate ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond_p4 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond_p5 = select i1 %cond_p4, i1 true, i1 %cond_p2 @@ -161,9 +161,9 @@ define i32 @logical_or_3ops_redundant_uminseq_operand(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_redundant_uminseq_operand' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_redundant_uminseq_operand ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 @@ -196,9 +196,9 @@ define i32 @logical_or_3ops_redundant_umin_operand(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_redundant_umin_operand' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_redundant_umin_operand ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %k umin_seq %m) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %k umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %k umin_seq %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %k umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 @@ -231,9 +231,9 @@ define i32 @logical_or_4ops_redundant_operand_across_umins(i32 %n, i32 %m, i32 % ; CHECK-LABEL: 'logical_or_4ops_redundant_operand_across_umins' ; CHECK-NEXT: Classifying expressions for: @logical_or_4ops_redundant_operand_across_umins ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k umin_seq %q) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k umin_seq %q) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k umin_seq %q)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k umin_seq %q)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %q) @@ -269,9 +269,9 @@ define i32 @logical_or_3ops_operand_wise_redundant_umin(i32 %n, i32 %m, i32 %k) ; CHECK-LABEL: 'logical_or_3ops_operand_wise_redundant_umin' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_operand_wise_redundant_umin ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n umin %m) umin_seq %k) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n umin %m) umin_seq %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %n, i32 %k) @@ -307,9 +307,9 @@ define i32 @logical_or_3ops_partially_redundant_umin(i32 %n, i32 %m, i32 %k) { ; CHECK-LABEL: 'logical_or_3ops_partially_redundant_umin' ; CHECK-NEXT: Classifying expressions for: @logical_or_3ops_partially_redundant_umin ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq (%m umin %k)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq (%m umin %k)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq (%m umin %k))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq (%m umin %k))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %n, i32 %m) ; CHECK-NEXT: --> (%n umin %m) U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %k) @@ -341,21 +341,21 @@ define i32 @logical_or_5ops_redundant_opearand_of_inner_uminseq(i32 %a, i32 %b, ; CHECK-LABEL: 'logical_or_5ops_redundant_opearand_of_inner_uminseq' ; CHECK-NEXT: Classifying expressions for: @logical_or_5ops_redundant_opearand_of_inner_uminseq ; CHECK-NEXT: %first.i = phi i32 [ 0, %entry ], [ %first.i.next, %first.loop ] -; CHECK-NEXT: --> {0,+,1}<%first.loop> U: full-set S: full-set Exits: (%e umin_seq %d umin_seq %a) LoopDispositions: { %first.loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%first.loop> U: full-set S: full-set Exits: (%e umin_seq %d umin_seq %a) LoopDispositions: { %first.loop: Computable } ; CHECK-NEXT: %first.i.next = add i32 %first.i, 1 -; CHECK-NEXT: --> {1,+,1}<%first.loop> U: full-set S: full-set Exits: (1 + (%e umin_seq %d umin_seq %a)) LoopDispositions: { %first.loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%first.loop> U: full-set S: full-set Exits: (1 + (%e umin_seq %d umin_seq %a)) LoopDispositions: { %first.loop: Computable } ; CHECK-NEXT: %cond_p3 = select i1 %cond_p0, i1 true, i1 %cond_p1 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1))) U: full-set S: full-set Exits: <> LoopDispositions: { %first.loop: Variant } ; CHECK-NEXT: %cond_p4 = select i1 %cond_p3, i1 true, i1 %cond_p2 ; CHECK-NEXT: --> (true + ((true + %cond_p0) umin_seq (true + %cond_p1) umin_seq (true + %cond_p2))) U: full-set S: full-set Exits: <> LoopDispositions: { %first.loop: Variant } ; CHECK-NEXT: %i = phi i32 [ 0, %first.loop.exit ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%a umin_seq %b umin_seq ((%e umin_seq %d) umin %c))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = call i32 @llvm.umin.i32(i32 %c, i32 %d) ; CHECK-NEXT: --> (%c umin %d) U: full-set S: full-set Exits: (%c umin %d) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %umin2 = call i32 @llvm.umin.i32(i32 %umin, i32 %first.i) -; CHECK-NEXT: --> ({0,+,1}<%first.loop> umin %c umin %d) U: full-set S: full-set --> ((%e umin_seq %d umin_seq %a) umin %c umin %d) U: full-set S: full-set Exits: ((%e umin_seq %d umin_seq %a) umin %c umin %d) LoopDispositions: { %loop: Invariant } +; CHECK-NEXT: --> ({0,+,1}<%first.loop> umin %c umin %d) U: full-set S: full-set --> ((%e umin_seq %d umin_seq %a) umin %c umin %d) U: full-set S: full-set Exits: ((%e umin_seq %d umin_seq %a) umin %c umin %d) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: %cond_p8 = select i1 %cond_p5, i1 true, i1 %cond_p6 ; CHECK-NEXT: --> (true + ((true + %cond_p5) umin_seq (true + %cond_p6))) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond = select i1 %cond_p8, i1 true, i1 %cond_p7 @@ -501,15 +501,15 @@ define i64 @uminseq_vs_ptrtoint_complexity(i64 %n, i64 %m, ptr %ptr) { ; CHECK-LABEL: 'uminseq_vs_ptrtoint_complexity' ; CHECK-NEXT: Classifying expressions for: @uminseq_vs_ptrtoint_complexity ; CHECK-NEXT: %i = phi i64 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i64 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %ptr.int = ptrtoint ptr %ptr to i64 ; CHECK-NEXT: --> (ptrtoint ptr %ptr to i64) U: full-set S: full-set ; CHECK-NEXT: %r = add i64 %i, %ptr.int -; CHECK-NEXT: --> {(ptrtoint ptr %ptr to i64),+,1}<%loop> U: full-set S: full-set --> ((%n umin_seq %m) + (ptrtoint ptr %ptr to i64)) U: full-set S: full-set +; CHECK-NEXT: --> {(ptrtoint ptr %ptr to i64),+,1}<%loop> U: full-set S: full-set --> ((%n umin_seq %m) + (ptrtoint ptr %ptr to i64)) U: full-set S: full-set ; CHECK-NEXT: Determining loop execution counts for: @uminseq_vs_ptrtoint_complexity ; CHECK-NEXT: Loop %loop: backedge-taken count is (%n umin_seq %m) ; CHECK-NEXT: Loop %loop: constant max backedge-taken count is i64 -1 @@ -537,9 +537,9 @@ define i32 @logical_and_implies_poison1(i32 %n) { ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((1 + %n) umin %n) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((1 + %n) umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((1 + %n) umin %n)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((1 + %n) umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison1 @@ -568,9 +568,9 @@ define i32 @logical_and_implies_poison2(i32 %n) { ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((1 + %n) umin %n) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((1 + %n) umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((1 + %n) umin %n)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((1 + %n) umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p1 umin %cond_p0) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison2 @@ -599,9 +599,9 @@ define i32 @logical_and_implies_poison3(i32 %n, i32 %m) { ; CHECK-NEXT: %add = add i32 %n, %m ; CHECK-NEXT: --> (%n + %m) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin %n) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin %n)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p1 umin %cond_p0) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison3 @@ -630,9 +630,9 @@ define i32 @logical_and_implies_poison_wrong_direction(i32 %n, i32 %m) { ; CHECK-NEXT: %add = add i32 %n, %m ; CHECK-NEXT: --> (%n + %m) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq (%n + %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq (%n + %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq (%n + %m))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq (%n + %m))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_wrong_direction @@ -659,9 +659,9 @@ define i32 @logical_and_implies_poison_noundef(i32 %n, i32 noundef %m) { ; CHECK-LABEL: 'logical_and_implies_poison_noundef' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison_noundef ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_noundef @@ -687,9 +687,9 @@ define i32 @logical_and_implies_poison_noundef_wrong_direction(i32 %n, i32 nound ; CHECK-LABEL: 'logical_and_implies_poison_noundef_wrong_direction' ; CHECK-NEXT: Classifying expressions for: @logical_and_implies_poison_noundef_wrong_direction ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%m umin_seq %n) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%m umin_seq %n) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%m umin_seq %n)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%m umin_seq %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_noundef_wrong_direction @@ -719,9 +719,9 @@ define i32 @logical_and_implies_poison_complex1(i32 %n, i32 %m) { ; CHECK-NEXT: %add1 = add i32 %add, 1 ; CHECK-NEXT: --> (1 + %n + %m) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin (1 + %n + %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin (1 + %n + %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin (1 + %n + %m))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin (1 + %n + %m))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_complex1 @@ -753,9 +753,9 @@ define i32 @logical_and_implies_poison_complex2(i32 %n, i32 %m, i32 %l) { ; CHECK-NEXT: %add1 = add i32 %add, %l ; CHECK-NEXT: --> (%n + %m + %l) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin (%n + %m + %l)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin (%n + %m + %l)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin (%n + %m + %l))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin (%n + %m + %l))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_complex2 @@ -787,9 +787,9 @@ define i32 @logical_and_implies_poison_complex_wrong_direction(i32 %n, i32 %m, i ; CHECK-NEXT: %add1 = add i32 %add, %l ; CHECK-NEXT: --> (%n + %m + %l) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin_seq (%n + %m + %l)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: ((%n + %m) umin_seq (%n + %m + %l)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin_seq (%n + %m + %l))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + ((%n + %m) umin_seq (%n + %m + %l))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_implies_poison_complex_wrong_direction @@ -819,9 +819,9 @@ define i32 @logical_and_implies_multiple_ops(i32 %n, i32 %m) { ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (((1 + %n) umin %n) umin_seq %m) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (((1 + %n) umin %n) umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (((1 + %n) umin %n) umin_seq %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (((1 + %n) umin %n) umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond2 = select i1 %cond, i1 %cond_p2, i1 false @@ -854,9 +854,9 @@ define i32 @logical_and_implies_multiple_ops2(i32 %n, i32 %m) { ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq ((1 + %n) umin %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq ((1 + %n) umin %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq ((1 + %n) umin %m))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq ((1 + %n) umin %m))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond2 = select i1 %cond, i1 %cond_p2, i1 false @@ -889,9 +889,9 @@ define i32 @logical_and_implies_multiple_ops3(i32 %n, i32 %m) { ; CHECK-NEXT: %add = add i32 %n, 1 ; CHECK-NEXT: --> (1 + %n) U: full-set S: full-set ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%m umin_seq ((1 + %n) umin %n)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%m umin_seq ((1 + %n) umin %n)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%m umin_seq ((1 + %n) umin %n))) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%m umin_seq ((1 + %n) umin %n))) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: %cond2 = select i1 %cond, i1 %cond_p2, i1 false @@ -990,9 +990,9 @@ define i32 @logical_and_not_zero_needs_context(i32 %n, i32 %m) { ; CHECK-LABEL: 'logical_and_not_zero_needs_context' ; CHECK-NEXT: Classifying expressions for: @logical_and_not_zero_needs_context ; CHECK-NEXT: %i = phi i32 [ 0, %entry ], [ %i.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (%n umin_seq %m) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %i.next = add i32 %i, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (%n umin_seq %m)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %cond = select i1 %cond_p0, i1 %cond_p1, i1 false ; CHECK-NEXT: --> (%cond_p0 umin_seq %cond_p1) U: full-set S: full-set Exits: <> LoopDispositions: { %loop: Variant } ; CHECK-NEXT: Determining loop execution counts for: @logical_and_not_zero_needs_context diff --git a/llvm/test/Analysis/ScalarEvolution/max-backedge-taken-count-guard-info-rewrite-expressions.ll b/llvm/test/Analysis/ScalarEvolution/max-backedge-taken-count-guard-info-rewrite-expressions.ll index 8c77d704eac6a..aac7bc813ce2e 100644 --- a/llvm/test/Analysis/ScalarEvolution/max-backedge-taken-count-guard-info-rewrite-expressions.ll +++ b/llvm/test/Analysis/ScalarEvolution/max-backedge-taken-count-guard-info-rewrite-expressions.ll @@ -808,9 +808,9 @@ define void @rewrite_add_rec() { ; CHECK-NEXT: %n.vec = and i64 %sub, -2 ; CHECK-NEXT: --> (2 * ({9,+,-1}<%outer.header> /u 2)) U: [0,9) S: [0,9) Exits: 0 LoopDispositions: { %outer.header: Computable, %inner: Invariant } ; CHECK-NEXT: %inner.iv = phi i64 [ 0, %inner.ph ], [ %inner.iv.next, %inner ] -; CHECK-NEXT: --> {0,+,2}<%inner> U: [0,-1) S: [-9223372036854775808,9223372036854775807) Exits: (2 * ((-2 + (2 * ({9,+,-1}<%outer.header> /u 2))) /u 2)) LoopDispositions: { %inner: Computable, %outer.header: Variant } +; CHECK-NEXT: --> {0,+,2}<%inner> U: [0,-1) S: [-9223372036854775808,9223372036854775807) Exits: (2 * ((-2 + (2 * ({9,+,-1}<%outer.header> /u 2))) /u 2)) LoopDispositions: { %inner: Computable, %outer.header: Variant } ; CHECK-NEXT: %inner.iv.next = add i64 %inner.iv, 2 -; CHECK-NEXT: --> {2,+,2}<%inner> U: [0,-1) S: [-9223372036854775808,9223372036854775807) Exits: (2 + (2 * ((-2 + (2 * ({9,+,-1}<%outer.header> /u 2))) /u 2))) LoopDispositions: { %inner: Computable, %outer.header: Variant } +; CHECK-NEXT: --> {2,+,2}<%inner> U: [0,-1) S: [-9223372036854775808,9223372036854775807) Exits: (2 + (2 * ((-2 + (2 * ({9,+,-1}<%outer.header> /u 2))) /u 2))) LoopDispositions: { %inner: Computable, %outer.header: Variant } ; CHECK-NEXT: %iv.next = add i64 %iv, 1 ; CHECK-NEXT: --> {1,+,1}<%outer.header> U: [1,11) S: [1,11) Exits: 10 LoopDispositions: { %outer.header: Computable, %inner: Invariant } ; CHECK-NEXT: Determining loop execution counts for: @rewrite_add_rec diff --git a/llvm/test/Analysis/ScalarEvolution/umin-umax-folds.ll b/llvm/test/Analysis/ScalarEvolution/umin-umax-folds.ll index fbdbefb875fba..b97afae894621 100644 --- a/llvm/test/Analysis/ScalarEvolution/umin-umax-folds.ll +++ b/llvm/test/Analysis/ScalarEvolution/umin-umax-folds.ll @@ -77,9 +77,9 @@ define void @uge_sext_x_zext_x(i32 %len) { ; CHECK-NEXT: %len.sext = sext i32 %len to i64 ; CHECK-NEXT: --> (sext i32 %len to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) ; CHECK-NEXT: %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (sext i32 %len to i64) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (sext i32 %len to i64) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %iv.next = add i64 %iv, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (sext i32 %len to i64)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (sext i32 %len to i64)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %sel = select i1 %cmp1, i64 %len.zext, i64 %len.sext ; CHECK-NEXT: --> (sext i32 %len to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 %len to i64) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: Determining loop execution counts for: @uge_sext_x_zext_x @@ -145,9 +145,9 @@ define void @ugt_sext_x_zext_x(i32 %len) { ; CHECK-NEXT: %len.sext = sext i32 %len to i64 ; CHECK-NEXT: --> (sext i32 %len to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) ; CHECK-NEXT: %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (sext i32 %len to i64) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (sext i32 %len to i64) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %iv.next = add i64 %iv, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (sext i32 %len to i64)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (sext i32 %len to i64)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umax = select i1 %cmp1, i64 %len.zext, i64 %len.sext ; CHECK-NEXT: --> (sext i32 %len to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 %len to i64) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: Determining loop execution counts for: @ugt_sext_x_zext_x @@ -247,9 +247,9 @@ define void @slt_sext_x_zext_x(i32 %len) { ; CHECK-NEXT: %len.sext = sext i32 %len to i64 ; CHECK-NEXT: --> (sext i32 %len to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) ; CHECK-NEXT: %iv = phi i64 [ 0, %entry ], [ %iv.next, %loop ] -; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (sext i32 %len to i64) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {0,+,1}<%loop> U: full-set S: full-set Exits: (sext i32 %len to i64) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %iv.next = add i64 %iv, 1 -; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (sext i32 %len to i64)) LoopDispositions: { %loop: Computable } +; CHECK-NEXT: --> {1,+,1}<%loop> U: full-set S: full-set Exits: (1 + (sext i32 %len to i64)) LoopDispositions: { %loop: Computable } ; CHECK-NEXT: %umin = select i1 %cmp1, i64 %len.zext, i64 %len.sext ; CHECK-NEXT: --> (sext i32 %len to i64) U: [-2147483648,2147483648) S: [-2147483648,2147483648) Exits: (sext i32 %len to i64) LoopDispositions: { %loop: Invariant } ; CHECK-NEXT: Determining loop execution counts for: @slt_sext_x_zext_x diff --git a/llvm/test/Transforms/LoopUnrollAndJam/unroll-and-jam.ll b/llvm/test/Transforms/LoopUnrollAndJam/unroll-and-jam.ll index 89ce66767ccc9..55603dc264a17 100644 --- a/llvm/test/Transforms/LoopUnrollAndJam/unroll-and-jam.ll +++ b/llvm/test/Transforms/LoopUnrollAndJam/unroll-and-jam.ll @@ -730,7 +730,7 @@ define void @test7(i32 %I, i32 %E, ptr noalias nocapture %A, ptr noalias nocaptu ; CHECK-NEXT: [[ADD_3]] = add nuw i32 [[I]], 4 ; CHECK-NEXT: [[ARRAYIDX2_3:%.*]] = getelementptr inbounds i32, ptr [[A]], i32 [[ADD_3]] ; CHECK-NEXT: store i32 2, ptr [[ARRAYIDX2_3]], align 4, !tbaa [[TBAA0]] -; CHECK-NEXT: [[NITER_NEXT_3]] = add i32 [[NITER]], 4 +; CHECK-NEXT: [[NITER_NEXT_3]] = add nuw i32 [[NITER]], 4 ; CHECK-NEXT: br label [[FOR_INNER:%.*]] ; CHECK: for.latch: ; CHECK-NEXT: [[ADD9_LCSSA:%.*]] = phi i32 [ [[ADD9:%.*]], [[FOR_INNER]] ] @@ -928,7 +928,7 @@ define void @test8(i32 %I, i32 %E, ptr noalias nocapture %A, ptr noalias nocaptu ; CHECK-NEXT: [[ADD_3]] = add nuw i32 [[I]], 4 ; CHECK-NEXT: [[ARRAYIDX6_3:%.*]] = getelementptr inbounds i32, ptr [[A]], i32 [[ADD_3]] ; CHECK-NEXT: store i32 2, ptr [[ARRAYIDX6_3]], align 4, !tbaa [[TBAA0]] -; CHECK-NEXT: [[NITER_NEXT_3]] = add i32 [[NITER]], 4 +; CHECK-NEXT: [[NITER_NEXT_3]] = add nuw i32 [[NITER]], 4 ; CHECK-NEXT: br label [[FOR_INNER:%.*]] ; CHECK: for.inner: ; CHECK-NEXT: [[SUM:%.*]] = phi i32 [ 0, [[FOR_OUTER]] ], [ [[ADD9:%.*]], [[FOR_INNER]] ]