@@ -1595,6 +1595,57 @@ func.func @test_mod_int64_no_fmod(%arg0: !torch.vtensor<[6],si64>, %arg1: !torch
1595
1595
1596
1596
// -----
1597
1597
1598
+ // CHECK-LABEL: func.func @test_meanvarnorm(
1599
+ func.func @test_meanvarnorm (%arg0: !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >) -> !torch.vtensor <[3 ,5 ,2 ,2 ],f32 > attributes {torch.onnx_meta.ir_version = 3 : si64 , torch.onnx_meta.opset_version = 13 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
1600
+ // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[3,5,2,2],f32>) -> !torch.vtensor<[3,5,2,2],f32> attributes {torch.onnx_meta.ir_version = 3 : si64, torch.onnx_meta.opset_version = 13 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
1601
+ // CHECK: %[[VAL_0:.*]] = torch.constant.bool true
1602
+ // CHECK: %[[VAL_1:.*]] = torch.constant.bool false
1603
+ // CHECK: %[[VAL_2:.*]] = torch.constant.none
1604
+ // CHECK: %[[VAL_3:.*]] = torch.constant.int 0
1605
+ // CHECK: %[[VAL_4:.*]] = torch.constant.int 2
1606
+ // CHECK: %[[VAL_5:.*]] = torch.constant.int 3
1607
+ // CHECK: %[[VAL_6:.*]] = torch.prim.ListConstruct %[[VAL_3]], %[[VAL_4]], %[[VAL_5]] : (!torch.int, !torch.int, !torch.int) -> !torch.list<int>
1608
+ // CHECK: %[[VAL_7:.*]] = torch.aten.mean.dim %[[ARG0]], %[[VAL_6]], %[[VAL_0]], %[[VAL_2]] : !torch.vtensor<[3,5,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[1,5,1,1],f32>
1609
+ // CHECK: %[[VAL_8:.*]] = torch.aten.var.dim %[[ARG0]], %[[VAL_6]], %[[VAL_1]], %[[VAL_0]] : !torch.vtensor<[3,5,2,2],f32>, !torch.list<int>, !torch.bool, !torch.bool -> !torch.vtensor<[1,5,1,1],f32>
1610
+ // CHECK: %[[VAL_9:.*]] = torch.constant.int 1
1611
+ // CHECK: %[[VAL_10:.*]] = torch.constant.float 1.000000e-09
1612
+ // CHECK: %[[VAL_11:.*]] = torch.aten.add.Scalar %[[VAL_8]], %[[VAL_10]], %[[VAL_9]] : !torch.vtensor<[1,5,1,1],f32>, !torch.float, !torch.int -> !torch.vtensor<[1,5,1,1],f32>
1613
+ // CHECK: %[[VAL_12:.*]] = torch.aten.sqrt %[[VAL_11]] : !torch.vtensor<[1,5,1,1],f32> -> !torch.vtensor<[1,5,1,1],f32>
1614
+ // CHECK: %[[VAL_13:.*]] = torch.aten.sub.Tensor %[[ARG0]], %[[VAL_7]], %[[VAL_9]] : !torch.vtensor<[3,5,2,2],f32>, !torch.vtensor<[1,5,1,1],f32>, !torch.int -> !torch.vtensor<[3,5,2,2],f32>
1615
+ // CHECK: %[[VAL_14:.*]] = torch.aten.div.Tensor %[[VAL_13]], %[[VAL_12]] : !torch.vtensor<[3,5,2,2],f32>, !torch.vtensor<[1,5,1,1],f32> -> !torch.vtensor<[3,5,2,2],f32>
1616
+ // CHECK: return %[[VAL_14]] : !torch.vtensor<[3,5,2,2],f32>
1617
+ // CHECK: }
1618
+ %0 = torch.operator " onnx.MeanVarianceNormalization" (%arg0 ) : (!torch.vtensor <[3 ,5 ,2 ,2 ],f32 >) -> !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >
1619
+ return %0 : !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >
1620
+ }
1621
+
1622
+ // -----
1623
+
1624
+ // CHECK-LABEL: func.func @test_meanvarnorm_axes(
1625
+ func.func @test_meanvarnorm_axes (%arg0: !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >) -> !torch.vtensor <[3 ,5 ,2 ,2 ],f32 > attributes {torch.onnx_meta.ir_version = 3 : si64 , torch.onnx_meta.opset_version = 13 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
1626
+ // CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[3,5,2,2],f32>) -> !torch.vtensor<[3,5,2,2],f32> attributes {torch.onnx_meta.ir_version = 3 : si64, torch.onnx_meta.opset_version = 13 : si64, torch.onnx_meta.producer_name = "backend-test", torch.onnx_meta.producer_version = ""} {
1627
+ // CHECK: %[[VAL_0:.*]] = torch.constant.bool true
1628
+ // CHECK: %[[VAL_1:.*]] = torch.constant.bool false
1629
+ // CHECK: %[[VAL_2:.*]] = torch.constant.none
1630
+ // CHECK: %[[VAL_3:.*]] = torch.constant.int 1
1631
+ // CHECK: %[[VAL_4:.*]] = torch.constant.int 3
1632
+ // CHECK: %[[VAL_5:.*]] = torch.prim.ListConstruct %[[VAL_3]], %[[VAL_4]] : (!torch.int, !torch.int) -> !torch.list<int>
1633
+ // CHECK: %[[VAL_6:.*]] = torch.aten.mean.dim %[[ARG0]], %[[VAL_5]], %[[VAL_0]], %[[VAL_2]] : !torch.vtensor<[3,5,2,2],f32>, !torch.list<int>, !torch.bool, !torch.none -> !torch.vtensor<[3,1,2,1],f32>
1634
+ // CHECK: %[[VAL_7:.*]] = torch.aten.var.dim %[[ARG0]], %[[VAL_5]], %[[VAL_1]], %[[VAL_0]] : !torch.vtensor<[3,5,2,2],f32>, !torch.list<int>, !torch.bool, !torch.bool -> !torch.vtensor<[3,1,2,1],f32>
1635
+ // CHECK: %[[VAL_8:.*]] = torch.constant.int 1
1636
+ // CHECK: %[[VAL_9:.*]] = torch.constant.float 1.000000e-09
1637
+ // CHECK: %[[VAL_10:.*]] = torch.aten.add.Scalar %[[VAL_7]], %[[VAL_9]], %[[VAL_8]] : !torch.vtensor<[3,1,2,1],f32>, !torch.float, !torch.int -> !torch.vtensor<[3,1,2,1],f32>
1638
+ // CHECK: %[[VAL_11:.*]] = torch.aten.sqrt %[[VAL_10]] : !torch.vtensor<[3,1,2,1],f32> -> !torch.vtensor<[3,1,2,1],f32>
1639
+ // CHECK: %[[VAL_12:.*]] = torch.aten.sub.Tensor %[[ARG0]], %[[VAL_6]], %[[VAL_8]] : !torch.vtensor<[3,5,2,2],f32>, !torch.vtensor<[3,1,2,1],f32>, !torch.int -> !torch.vtensor<[3,5,2,2],f32>
1640
+ // CHECK: %[[VAL_13:.*]] = torch.aten.div.Tensor %[[VAL_12]], %[[VAL_11]] : !torch.vtensor<[3,5,2,2],f32>, !torch.vtensor<[3,1,2,1],f32> -> !torch.vtensor<[3,5,2,2],f32>
1641
+ // CHECK: return %[[VAL_13]] : !torch.vtensor<[3,5,2,2],f32>
1642
+ // CHECK: }
1643
+ %0 = torch.operator " onnx.MeanVarianceNormalization" (%arg0 ) {torch.onnx.axes = [1 : si64 , 3 : si64 ]} : (!torch.vtensor <[3 ,5 ,2 ,2 ],f32 >) -> !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >
1644
+ return %0 : !torch.vtensor <[3 ,5 ,2 ,2 ],f32 >
1645
+ }
1646
+
1647
+ // -----
1648
+
1598
1649
// CHECK-LABEL: func.func @test_not_2d
1599
1650
func.func @test_not_2d (%arg0: !torch.vtensor <[3 ,4 ],i1 >) -> !torch.vtensor <[3 ,4 ],i1 > attributes {torch.onnx_meta.ir_version = 3 : si64 , torch.onnx_meta.opset_version = 1 : si64 , torch.onnx_meta.producer_name = " backend-test" , torch.onnx_meta.producer_version = " " } {
1600
1651
// CHECK: torch.aten.bitwise_not %arg0 : !torch.vtensor<[3,4],i1> -> !torch.vtensor<[3,4],i1>
0 commit comments