|
| 1 | +# https://arxiv.org/abs/2510.14657 |
| 2 | +# but instead of their decorr module updated with SGD, remove all projections and just return a decorrelation auxiliary loss |
| 3 | + |
| 4 | +import torch |
| 5 | +from torch import nn, stack |
| 6 | +import torch.nn.functional as F |
| 7 | +from torch.nn import Module, ModuleList |
| 8 | + |
| 9 | +from einops import rearrange, repeat, reduce, einsum, pack, unpack |
| 10 | +from einops.layers.torch import Rearrange |
| 11 | + |
| 12 | +# helpers |
| 13 | + |
| 14 | +def exists(v): |
| 15 | + return v is not None |
| 16 | + |
| 17 | +def default(v, d): |
| 18 | + return v if exists(v) else d |
| 19 | + |
| 20 | +def pair(t): |
| 21 | + return t if isinstance(t, tuple) else (t, t) |
| 22 | + |
| 23 | +# decorr loss |
| 24 | + |
| 25 | +class DecorrelationLoss(Module): |
| 26 | + def __init__( |
| 27 | + self, |
| 28 | + sample_frac = 1. |
| 29 | + ): |
| 30 | + super().__init__() |
| 31 | + assert 0. <= sample_frac <= 1. |
| 32 | + self.need_sample = sample_frac < 1. |
| 33 | + self.sample_frac = sample_frac |
| 34 | + |
| 35 | + def forward( |
| 36 | + self, |
| 37 | + tokens |
| 38 | + ): |
| 39 | + batch, seq_len, dim, device = *tokens.shape[-3:], tokens.device |
| 40 | + |
| 41 | + if self.need_sample: |
| 42 | + num_sampled = int(seq_len * self.sample_frac) |
| 43 | + assert num_sampled >= 2. |
| 44 | + |
| 45 | + tokens, packed_shape = pack([tokens], '* n d e') |
| 46 | + |
| 47 | + indices = torch.randn(tokens.shape[:2]).argsort(dim = -1)[..., :num_sampled, :] |
| 48 | + |
| 49 | + batch_arange = torch.arange(tokens.shape[0], device = tokens.device) |
| 50 | + batch_arange = rearrange(batch_arange, 'b -> b 1') |
| 51 | + |
| 52 | + tokens = tokens[batch_arange, indices] |
| 53 | + tokens, = unpack(tokens, packed_shape, '* n d e') |
| 54 | + |
| 55 | + dist = einsum(tokens, tokens, '... n d, ... n e -> ... d e') / tokens.shape[-2] |
| 56 | + eye = torch.eye(dim, device = device) |
| 57 | + |
| 58 | + loss = dist.pow(2) * (1. - eye) / ((dim - 1) * dim) |
| 59 | + |
| 60 | + loss = reduce(loss, '... b d e -> b', 'sum') |
| 61 | + return loss.mean() |
| 62 | + |
| 63 | +# classes |
| 64 | + |
| 65 | +class FeedForward(Module): |
| 66 | + def __init__(self, dim, hidden_dim, dropout = 0.): |
| 67 | + super().__init__() |
| 68 | + self.norm = nn.LayerNorm(dim) |
| 69 | + |
| 70 | + self.net = nn.Sequential( |
| 71 | + nn.Linear(dim, hidden_dim), |
| 72 | + nn.GELU(), |
| 73 | + nn.Dropout(dropout), |
| 74 | + nn.Linear(hidden_dim, dim), |
| 75 | + nn.Dropout(dropout) |
| 76 | + ) |
| 77 | + |
| 78 | + def forward(self, x): |
| 79 | + normed = self.norm(x) |
| 80 | + return self.net(x), normed |
| 81 | + |
| 82 | +class Attention(Module): |
| 83 | + def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): |
| 84 | + super().__init__() |
| 85 | + inner_dim = dim_head * heads |
| 86 | + project_out = not (heads == 1 and dim_head == dim) |
| 87 | + |
| 88 | + self.norm = nn.LayerNorm(dim) |
| 89 | + self.heads = heads |
| 90 | + self.scale = dim_head ** -0.5 |
| 91 | + |
| 92 | + self.attend = nn.Softmax(dim = -1) |
| 93 | + self.dropout = nn.Dropout(dropout) |
| 94 | + |
| 95 | + self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) |
| 96 | + |
| 97 | + self.to_out = nn.Sequential( |
| 98 | + nn.Linear(inner_dim, dim), |
| 99 | + nn.Dropout(dropout) |
| 100 | + ) if project_out else nn.Identity() |
| 101 | + |
| 102 | + def forward(self, x): |
| 103 | + normed = self.norm(x) |
| 104 | + |
| 105 | + qkv = self.to_qkv(normed).chunk(3, dim = -1) |
| 106 | + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) |
| 107 | + |
| 108 | + dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale |
| 109 | + |
| 110 | + attn = self.attend(dots) |
| 111 | + attn = self.dropout(attn) |
| 112 | + |
| 113 | + out = torch.matmul(attn, v) |
| 114 | + out = rearrange(out, 'b h n d -> b n (h d)') |
| 115 | + |
| 116 | + return self.to_out(out), normed |
| 117 | + |
| 118 | +class Transformer(Module): |
| 119 | + def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): |
| 120 | + super().__init__() |
| 121 | + self.norm = nn.LayerNorm(dim) |
| 122 | + self.layers = ModuleList([]) |
| 123 | + |
| 124 | + for _ in range(depth): |
| 125 | + self.layers.append(ModuleList([ |
| 126 | + Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout), |
| 127 | + FeedForward(dim, mlp_dim, dropout = dropout) |
| 128 | + ])) |
| 129 | + |
| 130 | + def forward(self, x): |
| 131 | + |
| 132 | + normed_inputs = [] |
| 133 | + |
| 134 | + for attn, ff in self.layers: |
| 135 | + attn_out, attn_normed_inp = attn(x) |
| 136 | + x = attn_out + x |
| 137 | + |
| 138 | + ff_out, ff_normed_inp = ff(x) |
| 139 | + x = ff_out + x |
| 140 | + |
| 141 | + normed_inputs.append(attn_normed_inp) |
| 142 | + normed_inputs.append(ff_normed_inp) |
| 143 | + |
| 144 | + return self.norm(x), stack(normed_inputs) |
| 145 | + |
| 146 | +class ViT(Module): |
| 147 | + def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0., decorr_sample_frac = 1.): |
| 148 | + super().__init__() |
| 149 | + image_height, image_width = pair(image_size) |
| 150 | + patch_height, patch_width = pair(patch_size) |
| 151 | + |
| 152 | + assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' |
| 153 | + |
| 154 | + num_patches = (image_height // patch_height) * (image_width // patch_width) |
| 155 | + patch_dim = channels * patch_height * patch_width |
| 156 | + assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' |
| 157 | + |
| 158 | + self.to_patch_embedding = nn.Sequential( |
| 159 | + Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), |
| 160 | + nn.LayerNorm(patch_dim), |
| 161 | + nn.Linear(patch_dim, dim), |
| 162 | + nn.LayerNorm(dim), |
| 163 | + ) |
| 164 | + |
| 165 | + self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) |
| 166 | + self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) |
| 167 | + self.dropout = nn.Dropout(emb_dropout) |
| 168 | + |
| 169 | + self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) |
| 170 | + |
| 171 | + self.pool = pool |
| 172 | + self.to_latent = nn.Identity() |
| 173 | + |
| 174 | + self.mlp_head = nn.Linear(dim, num_classes) |
| 175 | + |
| 176 | + # decorrelation loss related |
| 177 | + |
| 178 | + self.has_decorr_loss = decorr_sample_frac > 0. |
| 179 | + |
| 180 | + if self.has_decorr_loss: |
| 181 | + self.decorr_loss = DecorrelationLoss(decorr_sample_frac) |
| 182 | + |
| 183 | + self.register_buffer('zero', torch.tensor(0.), persistent = False) |
| 184 | + |
| 185 | + def forward( |
| 186 | + self, |
| 187 | + img, |
| 188 | + return_decorr_aux_loss = None |
| 189 | + ): |
| 190 | + return_decorr_aux_loss = default(return_decorr_aux_loss, self.training) and self.has_decorr_loss |
| 191 | + |
| 192 | + x = self.to_patch_embedding(img) |
| 193 | + b, n, _ = x.shape |
| 194 | + |
| 195 | + cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b) |
| 196 | + x = torch.cat((cls_tokens, x), dim=1) |
| 197 | + x += self.pos_embedding[:, :(n + 1)] |
| 198 | + x = self.dropout(x) |
| 199 | + |
| 200 | + x, normed_layer_inputs = self.transformer(x) |
| 201 | + |
| 202 | + # maybe return decor loss |
| 203 | + |
| 204 | + decorr_aux_loss = self.zero |
| 205 | + |
| 206 | + if return_decorr_aux_loss: |
| 207 | + decorr_aux_loss = self.decorr_loss(normed_layer_inputs) |
| 208 | + |
| 209 | + x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] |
| 210 | + |
| 211 | + x = self.to_latent(x) |
| 212 | + return self.mlp_head(x), decorr_aux_loss |
| 213 | + |
| 214 | +# quick test |
| 215 | + |
| 216 | +if __name__ == '__main__': |
| 217 | + decorr_loss = DecorrelationLoss(0.1) |
| 218 | + |
| 219 | + hiddens = torch.randn(6, 2, 512, 256) |
| 220 | + |
| 221 | + decorr_loss(hiddens) |
| 222 | + decorr_loss(hiddens[0]) |
0 commit comments