Skip to content

Commit 845c844

Browse files
committed
add a vit nd with rotary nd, from Jerry Xiong at UIUC
1 parent 5f2bc0c commit 845c844

File tree

3 files changed

+302
-1
lines changed

3 files changed

+302
-1
lines changed

README.md

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -2181,4 +2181,13 @@ Coming from computer vision and new to transformers? Here are some resources tha
21812181
}
21822182
```
21832183

2184+
```bibtex
2185+
@misc{xiong2025ndrope,
2186+
author = {Jerry Xiong},
2187+
title = {On n-dimensional rotary positional embeddings},
2188+
year = {2025},
2189+
url = {https://jerryxio.ng/posts/nd-rope/}
2190+
}
2191+
```
2192+
21842193
*I visualise a time when we will be to robots what dogs are to humans, and I’m rooting for the machines.* — Claude Shannon

setup.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@
66
setup(
77
name = 'vit-pytorch',
88
packages = find_packages(exclude=['examples']),
9-
version = '1.12.0',
9+
version = '1.12.1',
1010
license='MIT',
1111
description = 'Vision Transformer (ViT) - Pytorch',
1212
long_description = long_description,

vit_pytorch/vit_nd_rotary.py

Lines changed: 292 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,292 @@
1+
from __future__ import annotations
2+
3+
import torch
4+
from torch import nn, arange, cat, stack, Tensor
5+
from torch.nn import Module, ModuleList
6+
import torch.nn.functional as F
7+
8+
from einops import rearrange, repeat, reduce
9+
from einops.layers.torch import Rearrange
10+
11+
# helpers
12+
13+
def exists(val):
14+
return val is not None
15+
16+
def l2norm(t):
17+
return F.normalize(t, dim = -1, p = 2)
18+
19+
def join(arr, delimiter = ' '):
20+
return delimiter.join(arr)
21+
22+
def ensure_tuple(t, length):
23+
if isinstance(t, (tuple, list)):
24+
assert len(t) == length, f'Expected tuple of length {length}, got {len(t)}'
25+
return tuple(t)
26+
return (t,) * length
27+
28+
# golden gate rotary - Jerry Xiong, PhD student at UIUC
29+
# https://jerryxio.ng/posts/nd-rope/
30+
31+
def _phi(m: int) -> float:
32+
x = 2.0
33+
for _ in range(10):
34+
x = (1 + x) ** (1.0 / (m + 1.0))
35+
return x
36+
37+
def make_directions(n: int, d: int) -> Tensor:
38+
g = _phi(d)
39+
alpha = (1.0 / g) ** arange(1, d + 1, dtype = torch.float64)
40+
i = arange(1, n + 1, dtype = torch.float64).unsqueeze(1)
41+
z = torch.fmod(i * alpha, 1.0)
42+
directions = torch.erfinv(2.0 * z - 1.0)
43+
directions = l2norm(directions)
44+
return directions.float()
45+
46+
class GoldenGateRoPENd(Module):
47+
def __init__(
48+
self,
49+
dim_pos: int,
50+
heads: int,
51+
dim_head: int,
52+
rope_min_freq: float = 1.0,
53+
rope_max_freq: float = 10000.0,
54+
rope_p_zero_freqs: float = 0.0, # proportion of frequencies set to 0
55+
):
56+
super().__init__()
57+
n_freqs = dim_head // 2
58+
n_zero_freqs = round(rope_p_zero_freqs * n_freqs)
59+
60+
omega = cat((
61+
torch.zeros(n_zero_freqs),
62+
rope_min_freq * (rope_max_freq / rope_min_freq) ** torch.linspace(0, 1, n_freqs - n_zero_freqs),
63+
))
64+
65+
directions = rearrange(
66+
make_directions(heads * n_freqs, dim_pos),
67+
'(h f) p -> h f p',
68+
h = heads
69+
)
70+
71+
omega_expanded = rearrange(omega, 'f -> f 1')
72+
self.register_buffer('freqs', directions * omega_expanded) # shape: (h, f, p)
73+
74+
def forward(self, input: Tensor, pos: Tensor) -> Tensor:
75+
# input shape: (b, h, n, d) where d = head_dim
76+
# pos shape: (b, n, p) where p = pos_dim
77+
# self.freqs shape: (h, f, p) where f = d // 2
78+
79+
x, y = input.float().chunk(2, dim = -1) # both (b, h, n, f)
80+
81+
# Expand dimensions for broadcasting
82+
freqs = rearrange(self.freqs, 'h f p -> 1 h 1 f p')
83+
positions = rearrange(pos.float(), 'b n p -> b 1 n 1 p')
84+
85+
# Compute theta for each (batch, head, seq, freq)
86+
theta = reduce(freqs * positions, 'b h n f p -> b h n f', 'sum')
87+
88+
cos_theta = torch.cos(theta)
89+
sin_theta = torch.sin(theta)
90+
91+
# Apply rotation
92+
x_out = x * cos_theta - y * sin_theta
93+
y_out = x * sin_theta + y * cos_theta
94+
95+
output = cat((x_out, y_out), dim=-1)
96+
return output.type_as(input)
97+
98+
# classes
99+
100+
class FeedForward(Module):
101+
def __init__(self, dim, hidden_dim, dropout = 0.):
102+
super().__init__()
103+
self.net = nn.Sequential(
104+
nn.LayerNorm(dim),
105+
nn.Linear(dim, hidden_dim),
106+
nn.GELU(),
107+
nn.Dropout(dropout),
108+
nn.Linear(hidden_dim, dim),
109+
nn.Dropout(dropout)
110+
)
111+
112+
def forward(self, x):
113+
return self.net(x)
114+
115+
class Attention(Module):
116+
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0., rotary_emb = None):
117+
super().__init__()
118+
inner_dim = dim_head * heads
119+
project_out = not (heads == 1 and dim_head == dim)
120+
121+
self.heads = heads
122+
self.scale = dim_head ** -0.5
123+
self.rotary_emb = rotary_emb
124+
125+
self.norm = nn.LayerNorm(dim)
126+
self.attend = nn.Softmax(dim = -1)
127+
self.dropout = nn.Dropout(dropout)
128+
129+
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)
130+
131+
self.to_out = nn.Sequential(
132+
nn.Linear(inner_dim, dim),
133+
nn.Dropout(dropout)
134+
) if project_out else nn.Identity()
135+
136+
def forward(self, x, pos = None):
137+
x = self.norm(x)
138+
qkv = self.to_qkv(x).chunk(3, dim = -1)
139+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv)
140+
141+
# Apply rotary embeddings if available
142+
if exists(self.rotary_emb):
143+
assert exists(pos)
144+
q = self.rotary_emb(q, pos)
145+
k = self.rotary_emb(k, pos)
146+
147+
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale
148+
149+
attn = self.attend(dots)
150+
attn = self.dropout(attn)
151+
152+
out = torch.matmul(attn, v)
153+
out = rearrange(out, 'b h n d -> b n (h d)')
154+
return self.to_out(out)
155+
156+
class Transformer(Module):
157+
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0., rotary_emb = None):
158+
super().__init__()
159+
self.norm = nn.LayerNorm(dim)
160+
self.layers = ModuleList([])
161+
for _ in range(depth):
162+
self.layers.append(ModuleList([
163+
Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout, rotary_emb = rotary_emb),
164+
FeedForward(dim, mlp_dim, dropout = dropout)
165+
]))
166+
167+
def forward(self, x, pos = None):
168+
for attn, ff in self.layers:
169+
x = attn(x, pos) + x
170+
x = ff(x) + x
171+
return self.norm(x)
172+
173+
class ViTND(Module):
174+
def __init__(
175+
self,
176+
*,
177+
ndim: int,
178+
input_shape: int | tuple[int, ...],
179+
patch_size: int | tuple[int, ...],
180+
num_classes: int,
181+
dim: int,
182+
depth: int,
183+
heads: int,
184+
mlp_dim: int,
185+
channels: int = 3,
186+
dim_head: int = 64,
187+
dropout: float = 0.,
188+
emb_dropout: float = 0.,
189+
rope_min_freq: float = 1.0,
190+
rope_max_freq: float = 10000.0,
191+
rope_p_zero_freqs: float = 0.0
192+
):
193+
super().__init__()
194+
195+
assert 1 <= ndim <= 7, 'ndim must be between 1 and 7'
196+
197+
self.ndim = ndim
198+
199+
input_shape = ensure_tuple(input_shape, ndim)
200+
patch_size = ensure_tuple(patch_size, ndim)
201+
202+
for i, (inp_dim, patch_dim) in enumerate(zip(input_shape, patch_size)):
203+
assert inp_dim % patch_dim == 0, f'Input dimension {i} ({inp_dim}) must be divisible by patch size ({patch_dim})'
204+
205+
num_patches_per_dim = [inp_dim // patch_dim for inp_dim, patch_dim in zip(input_shape, patch_size)]
206+
num_patches = 1
207+
for n in num_patches_per_dim:
208+
num_patches *= n
209+
210+
patch_dim = channels
211+
for p in patch_size:
212+
patch_dim *= p
213+
214+
dim_names = 'fghijkl'[:ndim]
215+
216+
input_dims = [f'({d} p{i})' for i, d in enumerate(dim_names)]
217+
patch_dims = [f'p{i}' for i in range(ndim)]
218+
219+
input_pattern = f'b c {join(input_dims)}'
220+
output_pattern = f'b {join(dim_names)} ({join(patch_dims)} c)'
221+
rearrange_str = f'{input_pattern} -> {output_pattern}'
222+
223+
rearrange_kwargs = {f'p{i}': p for i, p in enumerate(patch_size)}
224+
225+
self.to_patch_embedding = nn.Sequential(
226+
Rearrange(rearrange_str, **rearrange_kwargs),
227+
nn.Linear(patch_dim, dim),
228+
nn.LayerNorm(dim),
229+
)
230+
231+
self.dropout = nn.Dropout(emb_dropout)
232+
233+
# Create rotary embeddings
234+
self.rotary_emb = GoldenGateRoPENd(
235+
dim_pos = ndim,
236+
heads = heads,
237+
dim_head = dim_head,
238+
rope_min_freq = rope_min_freq,
239+
rope_max_freq = rope_max_freq,
240+
rope_p_zero_freqs = rope_p_zero_freqs
241+
)
242+
243+
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout, rotary_emb = self.rotary_emb)
244+
245+
self.to_latent = nn.Identity()
246+
self.mlp_head = nn.Linear(dim, num_classes)
247+
248+
def forward(self, x):
249+
x = self.to_patch_embedding(x) # (b, *spatial_dims, patch_dim)
250+
251+
batch, *spatial_dims, _, device = *x.shape, x.device
252+
253+
# Generate position coordinates
254+
255+
grids = [arange(d, device = device, dtype = torch.float32) for d in spatial_dims]
256+
grid = torch.meshgrid(*grids, indexing = 'ij')
257+
pos = stack(grid, dim = -1) # (*spatial_dims, ndim)
258+
259+
# flatten spatial dimensions for attention with nd rotary
260+
261+
pos = repeat(pos, '... p -> b (...) p', b = batch)
262+
x = rearrange(x, 'b ... d -> b (...) d')
263+
264+
x = self.dropout(x)
265+
266+
x = self.transformer(x, pos)
267+
268+
x = reduce(x, 'b n d -> b d', 'mean')
269+
270+
x = self.to_latent(x)
271+
return self.mlp_head(x)
272+
273+
274+
if __name__ == '__main__':
275+
276+
model = ViTND(
277+
ndim = 5,
278+
input_shape = (4, 8, 16, 32, 64),
279+
patch_size = (2, 2, 4, 4, 8),
280+
num_classes = 1000,
281+
dim = 512,
282+
depth = 6,
283+
heads = 8,
284+
mlp_dim = 2048,
285+
channels = 3,
286+
dropout = 0.1,
287+
emb_dropout = 0.1
288+
)
289+
290+
data = torch.randn(2, 3, 4, 8, 16, 32, 64)
291+
292+
logits = model(data)

0 commit comments

Comments
 (0)