|
| 1 | +""" |
| 2 | +Tests for TensorSymLog distribution. |
| 3 | +
|
| 4 | +This module contains test classes that verify: |
| 5 | +- TensorSymLog initialization and parameter validation |
| 6 | +- Core distribution operations (sample, rsample, log_prob) |
| 7 | +- TensorContainer integration (view, reshape, device operations) |
| 8 | +- Distribution-specific properties and edge cases |
| 9 | +""" |
| 10 | + |
| 11 | +import pytest |
| 12 | +import torch |
| 13 | + |
| 14 | +from tensorcontainer.distributions.symlog import SymLogDistribution |
| 15 | +from tensorcontainer.tensor_distribution.symlog import TensorSymLog |
| 16 | +from tests.compile_utils import run_and_compare_compiled |
| 17 | +from tests.tensor_distribution.conftest import ( |
| 18 | + assert_init_signatures_match, |
| 19 | + assert_properties_signatures_match, |
| 20 | + assert_property_values_match, |
| 21 | +) |
| 22 | + |
| 23 | + |
| 24 | +class TestTensorSymLogInitialization: |
| 25 | + @pytest.mark.parametrize( |
| 26 | + "loc_shape, scale_shape, expected_batch_shape", |
| 27 | + [ |
| 28 | + ((), (), ()), |
| 29 | + ((5,), (), (5,)), |
| 30 | + ((), (5,), (5,)), |
| 31 | + ((3, 5), (5,), (3, 5)), |
| 32 | + ((5,), (3, 5), (3, 5)), |
| 33 | + ((2, 4, 5), (5,), (2, 4, 5)), |
| 34 | + ((5,), (2, 4, 5), (2, 4, 5)), |
| 35 | + ((2, 4, 5), (2, 4, 5), (2, 4, 5)), |
| 36 | + ], |
| 37 | + ) |
| 38 | + def test_broadcasting_shapes(self, loc_shape, scale_shape, expected_batch_shape): |
| 39 | + """Test that batch_shape is correctly determined by broadcasting.""" |
| 40 | + loc = torch.randn(loc_shape) |
| 41 | + scale = torch.rand(scale_shape).exp() # scale must be positive |
| 42 | + td_symlog = TensorSymLog(loc=loc, scale=scale) |
| 43 | + assert td_symlog.batch_shape == expected_batch_shape |
| 44 | + assert td_symlog.dist().batch_shape == expected_batch_shape |
| 45 | + |
| 46 | + def test_initialization_with_scalars(self): |
| 47 | + """Test initialization with scalar parameters.""" |
| 48 | + td_symlog = TensorSymLog(loc=0.0, scale=1.0) |
| 49 | + assert td_symlog.batch_shape == torch.Size(()) |
| 50 | + assert td_symlog.loc.shape == torch.Size(()) |
| 51 | + assert td_symlog.scale.shape == torch.Size(()) |
| 52 | + |
| 53 | + def test_initialization_with_tensors(self): |
| 54 | + """Test initialization with tensor parameters.""" |
| 55 | + loc = torch.tensor([1.0, -2.0, 0.0]) |
| 56 | + scale = torch.tensor([0.5, 1.0, 2.0]) |
| 57 | + td_symlog = TensorSymLog(loc=loc, scale=scale) |
| 58 | + assert td_symlog.batch_shape == torch.Size([3]) |
| 59 | + assert torch.allclose(td_symlog.loc, loc) |
| 60 | + assert torch.allclose(td_symlog.scale, scale) |
| 61 | + |
| 62 | + |
| 63 | +class TestTensorSymLogTensorContainerIntegration: |
| 64 | + @pytest.mark.parametrize("param_shape", [(5,), (3, 5), (2, 4, 5)]) |
| 65 | + def test_compile_compatibility(self, param_shape): |
| 66 | + """Core operations should be compatible with torch.compile.""" |
| 67 | + loc = torch.randn(*param_shape) |
| 68 | + scale = torch.rand(*param_shape).exp() # scale must be positive |
| 69 | + td_symlog = TensorSymLog(loc=loc, scale=scale) |
| 70 | + |
| 71 | + sample = td_symlog.sample() |
| 72 | + |
| 73 | + def sample_fn(td): |
| 74 | + return td.sample() |
| 75 | + |
| 76 | + def rsample_fn(td): |
| 77 | + return td.rsample() |
| 78 | + |
| 79 | + def log_prob_fn(td, s): |
| 80 | + return td.log_prob(s) |
| 81 | + |
| 82 | + run_and_compare_compiled(sample_fn, td_symlog, fullgraph=False) |
| 83 | + run_and_compare_compiled(rsample_fn, td_symlog, fullgraph=False) |
| 84 | + run_and_compare_compiled(log_prob_fn, td_symlog, sample, fullgraph=False) |
| 85 | + |
| 86 | + def test_device_compatibility(self): |
| 87 | + """Test that the distribution works on different devices.""" |
| 88 | + loc = torch.tensor([1.0, -2.0, 0.0]) |
| 89 | + scale = torch.tensor([0.5, 1.0, 2.0]) |
| 90 | + td_symlog = TensorSymLog(loc=loc, scale=scale) |
| 91 | + |
| 92 | + # Test CPU |
| 93 | + sample = td_symlog.sample() |
| 94 | + assert sample.device == loc.device |
| 95 | + |
| 96 | + # Test GPU if available |
| 97 | + if torch.cuda.is_available(): |
| 98 | + loc_gpu = loc.cuda() |
| 99 | + scale_gpu = scale.cuda() |
| 100 | + td_symlog_gpu = TensorSymLog(loc=loc_gpu, scale=scale_gpu) |
| 101 | + sample_gpu = td_symlog_gpu.sample() |
| 102 | + assert sample_gpu.is_cuda |
| 103 | + |
| 104 | + |
| 105 | +class TestTensorSymLogAPIMatch: |
| 106 | + """ |
| 107 | + Tests that the TensorSymLog API matches the SymLogDistribution API. |
| 108 | + """ |
| 109 | + |
| 110 | + def test_init_signatures_match(self): |
| 111 | + """ |
| 112 | + Tests that the __init__ signature of TensorSymLog matches |
| 113 | + SymLogDistribution. |
| 114 | + """ |
| 115 | + assert_init_signatures_match(TensorSymLog, SymLogDistribution) |
| 116 | + |
| 117 | + def test_properties_match(self): |
| 118 | + """ |
| 119 | + Tests that the properties of TensorSymLog match |
| 120 | + SymLogDistribution. |
| 121 | + """ |
| 122 | + assert_properties_signatures_match(TensorSymLog, SymLogDistribution) |
| 123 | + |
| 124 | + def test_property_values_match(self): |
| 125 | + """ |
| 126 | + Tests that the property values of TensorSymLog match |
| 127 | + SymLogDistribution. |
| 128 | + """ |
| 129 | + loc = torch.tensor([1.0, -2.0, 0.0]) |
| 130 | + scale = torch.tensor([0.5, 1.0, 2.0]) |
| 131 | + td_symlog = TensorSymLog(loc=loc, scale=scale) |
| 132 | + assert_property_values_match(td_symlog) |
| 133 | + |
| 134 | + def test_distribution_equivalence(self): |
| 135 | + """ |
| 136 | + Tests that TensorSymLog produces the same results as SymLogDistribution. |
| 137 | + """ |
| 138 | + loc = torch.tensor([1.0, -2.0, 0.0]) |
| 139 | + scale = torch.tensor([0.5, 1.0, 2.0]) |
| 140 | + |
| 141 | + # Create both distributions |
| 142 | + td_symlog = TensorSymLog(loc=loc, scale=scale) |
| 143 | + symlog_dist = SymLogDistribution(loc=loc, scale=scale) |
| 144 | + |
| 145 | + # Test sampling |
| 146 | + torch.manual_seed(42) |
| 147 | + td_sample = td_symlog.sample(torch.Size([100])) |
| 148 | + torch.manual_seed(42) |
| 149 | + symlog_sample = symlog_dist.sample(torch.Size([100])) |
| 150 | + assert torch.allclose(td_sample, symlog_sample, rtol=1e-5, atol=1e-5) |
| 151 | + |
| 152 | + # Test log_prob |
| 153 | + test_values = torch.tensor([0.0, 1.0, -1.0]) |
| 154 | + td_log_prob = td_symlog.log_prob(test_values) |
| 155 | + symlog_log_prob = symlog_dist.log_prob(test_values) |
| 156 | + assert torch.allclose(td_log_prob, symlog_log_prob, rtol=1e-5, atol=1e-5) |
| 157 | + |
| 158 | + # Test mean and mode |
| 159 | + assert torch.allclose(td_symlog.mean, symlog_dist.mean, rtol=1e-5, atol=1e-5) |
| 160 | + assert torch.allclose(td_symlog.mode, symlog_dist.mode, rtol=1e-5, atol=1e-5) |
| 161 | + |
| 162 | + |
| 163 | +class TestTensorSymLogFunctionality: |
| 164 | + """Test specific functionality of TensorSymLog.""" |
| 165 | + |
| 166 | + @pytest.fixture |
| 167 | + def sample_params(self): |
| 168 | + """Common test parameters.""" |
| 169 | + return { |
| 170 | + "loc": torch.tensor([1.0, -2.0, 0.0]), |
| 171 | + "scale": torch.tensor([0.5, 1.0, 2.0]), |
| 172 | + } |
| 173 | + |
| 174 | + @pytest.fixture |
| 175 | + def sample_distribution(self, sample_params): |
| 176 | + """Common test distribution.""" |
| 177 | + return TensorSymLog(sample_params["loc"], sample_params["scale"]) |
| 178 | + |
| 179 | + def test_sampling(self, sample_distribution): |
| 180 | + """Test sampling functionality.""" |
| 181 | + # Test default sampling |
| 182 | + sample = sample_distribution.sample() |
| 183 | + assert sample.shape == sample_distribution.batch_shape |
| 184 | + assert torch.all(torch.isfinite(sample)) |
| 185 | + |
| 186 | + # Test sampling with specific shape |
| 187 | + sample_shape = torch.Size([10, 2]) |
| 188 | + samples = sample_distribution.sample(sample_shape) |
| 189 | + assert samples.shape == sample_shape + sample_distribution.batch_shape |
| 190 | + assert torch.all(torch.isfinite(samples)) |
| 191 | + |
| 192 | + def test_reparameterized_sampling(self, sample_distribution): |
| 193 | + """Test reparameterized sampling functionality.""" |
| 194 | + # Check if the distribution supports rsample |
| 195 | + assert sample_distribution.has_rsample == sample_distribution.dist().has_rsample |
| 196 | + |
| 197 | + # SymLogDistribution claims to support rsample but doesn't actually |
| 198 | + # provide gradients due to the non-affine transform |
| 199 | + assert sample_distribution.has_rsample |
| 200 | + |
| 201 | + # Test rsample - it should work but without gradients |
| 202 | + rsample = sample_distribution.rsample() |
| 203 | + assert rsample.shape == sample_distribution.batch_shape |
| 204 | + assert not rsample.requires_grad |
| 205 | + |
| 206 | + # Test rsample with specific shape |
| 207 | + sample_shape = torch.Size([10, 2]) |
| 208 | + rsamples = sample_distribution.rsample(sample_shape) |
| 209 | + assert rsamples.shape == sample_shape + sample_distribution.batch_shape |
| 210 | + assert not rsamples.requires_grad |
| 211 | + |
| 212 | + def test_log_prob(self, sample_distribution): |
| 213 | + """Test log probability computation.""" |
| 214 | + # Test log_prob at mode (should be high probability) |
| 215 | + mode_log_prob = sample_distribution.log_prob(sample_distribution.mode) |
| 216 | + assert mode_log_prob.shape == sample_distribution.batch_shape |
| 217 | + assert torch.all(torch.isfinite(mode_log_prob)) |
| 218 | + |
| 219 | + # Test log_prob for random values |
| 220 | + test_values = torch.tensor([0.0, 1.0, -1.0]) |
| 221 | + log_probs = sample_distribution.log_prob(test_values) |
| 222 | + assert log_probs.shape == test_values.shape |
| 223 | + assert torch.all(torch.isfinite(log_probs)) |
| 224 | + |
| 225 | + def test_entropy(self, sample_distribution): |
| 226 | + """Test entropy computation.""" |
| 227 | + # SymLogDistribution doesn't implement entropy |
| 228 | + with pytest.raises(NotImplementedError): |
| 229 | + sample_distribution.entropy() |
| 230 | + |
| 231 | + def test_mean_and_variance(self, sample_distribution): |
| 232 | + """Test mean and variance properties.""" |
| 233 | + mean = sample_distribution.mean |
| 234 | + |
| 235 | + assert mean.shape == sample_distribution.batch_shape |
| 236 | + assert torch.all(torch.isfinite(mean)) |
| 237 | + |
| 238 | + # SymLogDistribution doesn't implement variance |
| 239 | + with pytest.raises(NotImplementedError): |
| 240 | + sample_distribution.variance |
| 241 | + |
| 242 | + def test_mode_property(self, sample_distribution): |
| 243 | + """Test mode property.""" |
| 244 | + mode = sample_distribution.mode |
| 245 | + assert mode.shape == sample_distribution.batch_shape |
| 246 | + assert torch.all(torch.isfinite(mode)) |
| 247 | + |
| 248 | + def test_batch_and_event_shape(self, sample_distribution): |
| 249 | + """Test batch_shape and event_shape properties.""" |
| 250 | + assert sample_distribution.batch_shape == sample_distribution.loc.shape |
| 251 | + assert sample_distribution.event_shape == torch.Size() # Scalar event |
| 252 | + |
| 253 | + def test_support_property(self, sample_distribution): |
| 254 | + """Test support property.""" |
| 255 | + support = sample_distribution.support |
| 256 | + # SymLogDistribution has real support |
| 257 | + assert support is not None |
| 258 | + |
| 259 | + def test_cdf_and_icdf(self, sample_distribution): |
| 260 | + """Test CDF and inverse CDF functionality.""" |
| 261 | + # Test CDF |
| 262 | + test_values = torch.tensor([0.0, 1.0, -1.0]) |
| 263 | + cdf_values = sample_distribution.cdf(test_values) |
| 264 | + |
| 265 | + assert cdf_values.shape == test_values.shape |
| 266 | + assert torch.all((cdf_values >= 0) & (cdf_values <= 1)) |
| 267 | + assert torch.all(torch.isfinite(cdf_values)) |
| 268 | + |
| 269 | + # Test ICDF |
| 270 | + prob_values = torch.tensor([0.1, 0.5, 0.9]) |
| 271 | + icdf_values = sample_distribution.icdf(prob_values) |
| 272 | + |
| 273 | + assert icdf_values.shape == prob_values.shape |
| 274 | + assert torch.all(torch.isfinite(icdf_values)) |
| 275 | + |
| 276 | + # Test CDF/ICDF inverse relationship |
| 277 | + reconstructed_probs = sample_distribution.cdf(icdf_values) |
| 278 | + assert torch.allclose(reconstructed_probs, prob_values, atol=1e-5) |
| 279 | + |
| 280 | + def test_unflatten_distribution(self, sample_params): |
| 281 | + """Test _unflatten_distribution class method.""" |
| 282 | + td_symlog = TensorSymLog(sample_params["loc"], sample_params["scale"]) |
| 283 | + |
| 284 | + # Get attributes |
| 285 | + attributes = { |
| 286 | + "_loc": td_symlog._loc, |
| 287 | + "_scale": td_symlog._scale, |
| 288 | + "_validate_args": td_symlog._validate_args, |
| 289 | + } |
| 290 | + |
| 291 | + # Reconstruct distribution |
| 292 | + reconstructed = TensorSymLog._unflatten_distribution(attributes) |
| 293 | + |
| 294 | + # Check that the reconstructed distribution is equivalent |
| 295 | + assert torch.allclose(reconstructed.loc, td_symlog.loc) |
| 296 | + assert torch.allclose(reconstructed.scale, td_symlog.scale) |
| 297 | + assert reconstructed._validate_args == td_symlog._validate_args |
0 commit comments