Skip to content

Commit 9f8ee91

Browse files
RunningLeonMinh141120
authored andcommitted
convert : support interns1-mini (ggml-org#15412)
* support interns1-mini * fix comment * update
1 parent 8d3ca00 commit 9f8ee91

File tree

1 file changed

+65
-68
lines changed

1 file changed

+65
-68
lines changed

convert_hf_to_gguf.py

Lines changed: 65 additions & 68 deletions
Original file line numberDiff line numberDiff line change
@@ -1216,6 +1216,55 @@ def _try_set_pooling_type(self) -> None:
12161216
raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
12171217
self.gguf_writer.add_pooling_type(pooling_type)
12181218

1219+
def _set_vocab_interns1(self):
1220+
tokens: list[str] = []
1221+
toktypes: list[int] = []
1222+
1223+
from transformers import AutoTokenizer
1224+
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
1225+
vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
1226+
vocab_size = self.hparams.get("vocab_size", len(vocab))
1227+
assert max(vocab.values()) < vocab_size
1228+
1229+
tokpre = self.get_vocab_base_pre(tokenizer)
1230+
1231+
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
1232+
added_vocab = tokenizer.get_added_vocab()
1233+
1234+
added_tokens_decoder = tokenizer.added_tokens_decoder
1235+
1236+
for i in range(vocab_size):
1237+
if i not in reverse_vocab:
1238+
tokens.append(f"[PAD{i}]")
1239+
toktypes.append(gguf.TokenType.UNUSED)
1240+
else:
1241+
token: str = reverse_vocab[i]
1242+
if token in added_vocab:
1243+
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
1244+
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
1245+
if not added_tokens_decoder[i].normalized:
1246+
previous_token = token
1247+
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
1248+
if previous_token != token:
1249+
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
1250+
1251+
if added_tokens_decoder[i].special or self.does_token_look_special(token):
1252+
toktypes.append(gguf.TokenType.CONTROL)
1253+
else:
1254+
toktypes.append(gguf.TokenType.USER_DEFINED)
1255+
else:
1256+
toktypes.append(gguf.TokenType.NORMAL)
1257+
tokens.append(token)
1258+
1259+
self.gguf_writer.add_tokenizer_model("gpt2")
1260+
self.gguf_writer.add_tokenizer_pre(tokpre)
1261+
self.gguf_writer.add_token_list(tokens)
1262+
self.gguf_writer.add_token_types(toktypes)
1263+
1264+
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
1265+
special_vocab._set_special_token("bos", 151643)
1266+
special_vocab.add_to_gguf(self.gguf_writer)
1267+
12191268

12201269
class MmprojModel(ModelBase):
12211270
model_type = ModelType.MMPROJ
@@ -2932,7 +2981,8 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
29322981
if "language_model." in name:
29332982
name = name.replace("language_model.", "") # for InternVL
29342983
if name.startswith("mlp") or name.startswith("multi_modal_projector") \
2935-
or name.startswith("vision_model") or name.startswith("audio_tower"):
2984+
or name.startswith("vision_model") or name.startswith("audio_tower") \
2985+
or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
29362986
# skip vision and audio tensors
29372987
return []
29382988
yield from super().modify_tensors(data_torch, name, bid)
@@ -3604,6 +3654,19 @@ def prepare_tensors(self):
36043654
class Qwen3Model(Qwen2Model):
36053655
model_arch = gguf.MODEL_ARCH.QWEN3
36063656

3657+
def __init__(self, *args, **kwargs):
3658+
super().__init__(*args, **kwargs)
3659+
hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
3660+
self.origin_hf_arch = hparams.get('architectures', [None])[0]
3661+
3662+
def set_vocab(self):
3663+
# deal with intern-s1-mini
3664+
if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
3665+
self._set_vocab_interns1()
3666+
return
3667+
3668+
super().set_vocab()
3669+
36073670

36083671
@ModelBase.register("Qwen3MoeForCausalLM")
36093672
class Qwen3MoeModel(Qwen2MoeModel):
@@ -3620,73 +3683,7 @@ def set_vocab(self):
36203683
self._set_vocab_interns1()
36213684
return
36223685

3623-
try:
3624-
self._set_vocab_sentencepiece()
3625-
except FileNotFoundError:
3626-
self._set_vocab_gpt2()
3627-
3628-
def _set_vocab_interns1(self):
3629-
tokens: list[str] = []
3630-
toktypes: list[int] = []
3631-
3632-
from transformers import AutoTokenizer
3633-
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
3634-
vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
3635-
vocab_size = self.hparams.get("vocab_size", len(vocab))
3636-
assert max(vocab.values()) < vocab_size
3637-
3638-
tokpre = self.get_vocab_base_pre(tokenizer)
3639-
3640-
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
3641-
added_vocab = tokenizer.get_added_vocab()
3642-
3643-
added_tokens_decoder = tokenizer.added_tokens_decoder
3644-
3645-
for i in range(vocab_size):
3646-
if i not in reverse_vocab:
3647-
tokens.append(f"[PAD{i}]")
3648-
toktypes.append(gguf.TokenType.UNUSED)
3649-
else:
3650-
token: str = reverse_vocab[i]
3651-
if token in added_vocab:
3652-
# The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
3653-
# To avoid unexpected issues - we make sure to normalize non-normalized tokens
3654-
if not added_tokens_decoder[i].normalized:
3655-
previous_token = token
3656-
token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
3657-
if previous_token != token:
3658-
logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
3659-
3660-
if added_tokens_decoder[i].special or self.does_token_look_special(token):
3661-
toktypes.append(gguf.TokenType.CONTROL)
3662-
else:
3663-
toktypes.append(gguf.TokenType.USER_DEFINED)
3664-
else:
3665-
toktypes.append(gguf.TokenType.NORMAL)
3666-
tokens.append(token)
3667-
3668-
self.gguf_writer.add_tokenizer_model("gpt2")
3669-
self.gguf_writer.add_tokenizer_pre(tokpre)
3670-
self.gguf_writer.add_token_list(tokens)
3671-
self.gguf_writer.add_token_types(toktypes)
3672-
3673-
special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
3674-
special_tokens_map_file = self.dir_model / 'special_tokens_map.json'
3675-
additional_special_tokens = []
3676-
if special_tokens_map_file.is_file():
3677-
with open(special_tokens_map_file, encoding = 'utf-8') as f:
3678-
additional_special_tokens = json.load(f).get('additional_special_tokens', [])
3679-
tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json'
3680-
if tokenizer_cfg_file.is_file():
3681-
with open(tokenizer_cfg_file, encoding = 'utf-8') as f:
3682-
added_tokens_decoder = json.load(f).get('added_tokens_decoder', {})
3683-
token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']}
3684-
for token in additional_special_tokens:
3685-
if token in token2ids_map:
3686-
special_vocab._set_special_token(token, token2ids_map[token])
3687-
special_vocab._set_special_token('eos', 151645)
3688-
special_vocab._set_special_token("bos", 151643)
3689-
special_vocab.add_to_gguf(self.gguf_writer)
3686+
super().set_vocab()
36903687

36913688

36923689
@ModelBase.register("GPT2LMHeadModel")

0 commit comments

Comments
 (0)