You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: docs/source/content/examples/pool-based_sampling.ipynb
+1-1Lines changed: 1 addition & 1 deletion
Original file line number
Diff line number
Diff line change
@@ -8,7 +8,7 @@
8
8
"\n",
9
9
"## Overview\n",
10
10
"\n",
11
-
"In this example, the we apply an `ActiveLearner` onto the iris dataset using pool-based sampling. In this setting, we assume a small set of labeled data $\\mathcal{L}$ and a large set of unlabeled data $\\mathcal{U}$ such that $\\left| \\mathcal{L} \\right| \\ll \\left| \\mathcal{U} \\right|$. In his review of the active learning literature, Settles covers a high-level overview of the general pool-based sampling algorithm:\n",
11
+
"In this example, we apply an `ActiveLearner` onto the iris dataset using pool-based sampling. In this setting, we assume a small set of labeled data $\\mathcal{L}$ and a large set of unlabeled data $\\mathcal{U}$ such that $\\left| \\mathcal{L} \\right| \\ll \\left| \\mathcal{U} \\right|$. In his review of the active learning literature, Settles covers a high-level overview of the general pool-based sampling algorithm:\n",
12
12
"\n",
13
13
"> Queries are selectively drawn from the pool, which is usually assumed to be closed (i.e., static or non-changing), although this is not strictly necessary. Typically, instances are queried in a greedy fashion, according to an informativeness measure used to evaluate all instances in the pool (or, perhaps if $\\mathcal{U}$ is very large, some subsample thereof).\n",
0 commit comments