We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent 08eb1c6 commit d038eccCopy full SHA for d038ecc
README.md
@@ -33,7 +33,7 @@ Read the paper [here](https://arxiv.org/abs/1902.06714).
33
| Dense (fully-connected) | `dense` | `input1d`, `flatten` | 1 | ✅ | ✅ |
34
| Convolutional (2-d) | `conv2d` | `input3d`, `conv2d`, `maxpool2d`, `reshape` | 3 | ✅ | ✅(*) |
35
| Max-pooling (2-d) | `maxpool2d` | `input3d`, `conv2d`, `maxpool2d`, `reshape` | 3 | ✅ | ✅ |
36
-| Flatten | `flatten` | `input3d`, `conv2d`, `maxpool2d`, `reshape` | 1 | ✅ | ✅ |
+| Flatten | `flatten` | `input2d`, `input3d`, `conv2d`, `maxpool2d`, `reshape` | 1 | ✅ | ✅ |
37
| Reshape (1-d to 3-d) | `reshape` | `input1d`, `dense`, `flatten` | 3 | ✅ | ✅ |
38
39
(*) See Issue [#145](https://github.com/modern-fortran/neural-fortran/issues/145) regarding non-converging CNN training on the MNIST dataset.
0 commit comments