-
Notifications
You must be signed in to change notification settings - Fork 71
Open
Description
Thanks for your error report and we appreciate it a lot.
Checklist
- I have searched related issues but cannot get the expected help.
- I have read the FAQ documentation but cannot get the expected help.
- The bug has not been fixed in the latest version.
Describe the bug
When attempting to downloading the config and checkpoint for DDQ-DETR models of the mmdet package a value error is raised saying the path to the config file does not exist. Upon further examination this is due to a mistake in the path.
The return config path from get_model_info
for ddq-detr-5scale_r50_8xb2-12e_coco
is configs/dino/ddq-detr-5scale_r50_8xb2-12e_coco.py
but the correct path should be configs/ddq/ddq-detr-5scale_r50_8xb2-12e_coco.py
Same error occurs with other variants of DDQ-DETR.
Reproduction
- What command or script did you run?
To replicate the bug:
from mim.utils import DEFAULT_CACHE_DIR
from mim import download
checkpoint_name = download('mmdet', ['ddq-detr-5scale_r50_8xb2-12e_coco'], dest_root = DEFAULT_CACHE_DIR )
To show the source of the bug:
from mim.commans.search import get_model_info
model_info = get_model_info('mmdet', shown_fields=['weight', 'config'], to_dict=True)
model_info['ddq-detr-5scale_r50_8xb2-12e_coco']
- Did you make any modifications on the code or config? Did you understand what you have modified? No modifications
- What dataset did you use? No dataset yet
Environment
- Please run
python mmdet/utils/collect_env.py
to collect necessary environment information and paste it here. - You may add addition that may be helpful for locating the problem, such as
- How you installed PyTorch [e.g., pip, conda, source]
- Other environment variables that may be related (such as
$PATH
,$LD_LIBRARY_PATH
,$PYTHONPATH
, etc.)
OrderedDict([('sys.platform', 'linux'), ('Python', '3.10.6 (main, Jun 25 2024, 15:28:38) [GCC 9.4.0]'), ('CUDA available', True), ('MUSA available', False), ('numpy_random_seed', 2147483648), ('GPU 0', 'NVIDIA GeForce RTX 3080 Ti'), ('CUDA_HOME', '/usr/local/cuda'), ('NVCC', 'Cuda compilation tools, release 11.7, V11.7.99'), ('GCC', 'gcc (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0'), ('PyTorch', '1.13.1+cu117'), ('PyTorch compiling details', 'PyTorch built with:\n - GCC 9.3\n - C++ Version: 201402\n - Intel(R) Math Kernel Library Version 2020.0.0 Product Build 20191122 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v2.6.0 (Git Hash 52b5f107dd9cf10910aaa19cb47f3abf9b349815)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 11.7\n - NVCC architecture flags: -gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86\n - CuDNN 8.5\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.7, CUDNN_VERSION=8.5.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -fabi-version=11 -Wno-deprecated -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -fopenmp -DNDEBUG -DUSE_KINETO -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -DEDGE_PROFILER_USE_KINETO -O2 -fPIC -Wno-narrowing -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wunused-local-typedefs -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Werror=cast-function-type -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=1.13.1, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=ON, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, \n'), ('TorchVision', '0.14.1+cu117'), ('OpenCV', '4.10.0'), ('MMEngine', '0.10.4'), ('MMDetection', '3.3.0+9575cef')])
Error traceback
Here is an example printout:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
Cell In[33], [line 8](vscode-notebook-cell:?execution_count=33&line=8)
[6](vscode-notebook-cell:?execution_count=33&line=6) model_info_final['config'] = model_info_final['config'].replace('dino','ddq')
[7](vscode-notebook-cell:?execution_count=33&line=7) print(model_info_final)
----> [8](vscode-notebook-cell:?execution_count=33&line=8) checkpoint_name = download('mmdet',model_type, dest_root = DEFAULT_CACHE_DIR )[0]
File /local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:107, in download(package, configs, dest_root, check_certificate, dataset)
[104](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:104) raise ValueError('Please specify config or dataset to download!')
[106](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:106) if configs is not None:
--> [107](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:107) return _download_configs(package, configs, dest_root,
[108](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:108) check_certificate)
[109](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:109) else:
[110](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:110) return _download_dataset(package, dataset, dest_root)
File /local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:188, in _download_configs(package, configs, dest_root, check_certificate)
[186](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:186) break
[187](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:187) else:
--> [188](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:188) raise ValueError(
[189](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:189) highlighted_error(f'{config_path} is not found.'))
[191](https://vscode-remote+tunnel-002bensc-002dmcl-002d42.vscode-resource.vscode-cdn.net/local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mim/commands/download.py:191) return checkpoints
ValueError: /local-scratch/localhome/aharell/CFM-Task-Models/.venv/lib/python3.10/site-packages/mmdet/configs/dino/ddq-detr-5scale_r50_8xb2-12e_coco.py is not found.
Bug fix
See above for corrected path that should solve the bug
Metadata
Metadata
Assignees
Labels
No labels