|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# SAM3 Image Segmentation for Remote Sensing\n", |
| 8 | + "\n", |
| 9 | + "This notebook demonstrates how to use the Segment Anything Model 3 (SAM3) for segmenting remote sensing images using the `samgeo3` module.\n", |
| 10 | + "\n", |
| 11 | + "## Installation\n", |
| 12 | + "\n", |
| 13 | + "First, make sure you have the required dependencies installed:" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": null, |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "# %pip install \"segment-geospatial[samgeo3]\"" |
| 23 | + ] |
| 24 | + }, |
| 25 | + { |
| 26 | + "cell_type": "markdown", |
| 27 | + "metadata": {}, |
| 28 | + "source": [ |
| 29 | + "## Import Libraries\n" |
| 30 | + ] |
| 31 | + }, |
| 32 | + { |
| 33 | + "cell_type": "code", |
| 34 | + "execution_count": null, |
| 35 | + "metadata": {}, |
| 36 | + "outputs": [], |
| 37 | + "source": [ |
| 38 | + "import leafmap\n", |
| 39 | + "from samgeo import SamGeo3, download_file" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "markdown", |
| 44 | + "metadata": {}, |
| 45 | + "source": [ |
| 46 | + "## Download Sample Data\n", |
| 47 | + "\n", |
| 48 | + "Let's download a sample satellite image covering the University of California, Berkeley, for testing:\n" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": null, |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "url = \"https://huggingface.co/datasets/giswqs/geospatial/resolve/main/uc_berkeley.tif\"\n", |
| 58 | + "image_path = download_file(url)" |
| 59 | + ] |
| 60 | + }, |
| 61 | + { |
| 62 | + "cell_type": "code", |
| 63 | + "execution_count": null, |
| 64 | + "metadata": {}, |
| 65 | + "outputs": [], |
| 66 | + "source": [ |
| 67 | + "m = leafmap.Map()\n", |
| 68 | + "m.add_raster(image_path, layer_name=\"Satellite image\")\n", |
| 69 | + "m" |
| 70 | + ] |
| 71 | + }, |
| 72 | + { |
| 73 | + "cell_type": "markdown", |
| 74 | + "metadata": {}, |
| 75 | + "source": [ |
| 76 | + "## Request access to SAM3\n", |
| 77 | + "\n", |
| 78 | + "To use SAM3, you need to request access by filling out this form on Hugging Face: https://huggingface.co/facebook/sam3\n", |
| 79 | + "\n", |
| 80 | + "Once you have access, uncomment the following code block and run it." |
| 81 | + ] |
| 82 | + }, |
| 83 | + { |
| 84 | + "cell_type": "code", |
| 85 | + "execution_count": null, |
| 86 | + "metadata": {}, |
| 87 | + "outputs": [], |
| 88 | + "source": [ |
| 89 | + "# from huggingface_hub import login\n", |
| 90 | + "# login()" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "markdown", |
| 95 | + "metadata": {}, |
| 96 | + "source": [ |
| 97 | + "## Initialize SAM3\n", |
| 98 | + "\n", |
| 99 | + "When initializing SAM3, you can choose the backend from \"meta\", or \"transformers\"." |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "cell_type": "code", |
| 104 | + "execution_count": null, |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [], |
| 107 | + "source": [ |
| 108 | + "sam3 = SamGeo3(backend=\"meta\", device=None, checkpoint_path=None, load_from_HF=True)" |
| 109 | + ] |
| 110 | + }, |
| 111 | + { |
| 112 | + "cell_type": "markdown", |
| 113 | + "metadata": {}, |
| 114 | + "source": [ |
| 115 | + "## Set the image\n", |
| 116 | + "\n", |
| 117 | + "You can set the image by either passing the image path or the image URL." |
| 118 | + ] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [], |
| 125 | + "source": [ |
| 126 | + "sam3.set_image(image_path)" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "markdown", |
| 131 | + "metadata": {}, |
| 132 | + "source": [ |
| 133 | + "## Generate masks with text prompt" |
| 134 | + ] |
| 135 | + }, |
| 136 | + { |
| 137 | + "cell_type": "code", |
| 138 | + "execution_count": null, |
| 139 | + "metadata": {}, |
| 140 | + "outputs": [], |
| 141 | + "source": [ |
| 142 | + "sam3.generate_masks(prompt=\"building\")" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "markdown", |
| 147 | + "metadata": {}, |
| 148 | + "source": [ |
| 149 | + "## Show the results" |
| 150 | + ] |
| 151 | + }, |
| 152 | + { |
| 153 | + "cell_type": "code", |
| 154 | + "execution_count": null, |
| 155 | + "metadata": {}, |
| 156 | + "outputs": [], |
| 157 | + "source": [ |
| 158 | + "sam3.show_anns()" |
| 159 | + ] |
| 160 | + }, |
| 161 | + { |
| 162 | + "cell_type": "markdown", |
| 163 | + "metadata": {}, |
| 164 | + "source": [ |
| 165 | + "" |
| 166 | + ] |
| 167 | + }, |
| 168 | + { |
| 169 | + "cell_type": "code", |
| 170 | + "execution_count": null, |
| 171 | + "metadata": {}, |
| 172 | + "outputs": [], |
| 173 | + "source": [ |
| 174 | + "sam3.show_masks()" |
| 175 | + ] |
| 176 | + }, |
| 177 | + { |
| 178 | + "cell_type": "markdown", |
| 179 | + "metadata": {}, |
| 180 | + "source": [ |
| 181 | + "## Generate masks by bounding boxes" |
| 182 | + ] |
| 183 | + }, |
| 184 | + { |
| 185 | + "cell_type": "code", |
| 186 | + "execution_count": null, |
| 187 | + "metadata": {}, |
| 188 | + "outputs": [], |
| 189 | + "source": [ |
| 190 | + "# Define boxes in [xmin, ymin, xmax, ymax] format\n", |
| 191 | + "boxes = [[-122.2597, 37.8709, -122.2587, 37.8717]]\n", |
| 192 | + "\n", |
| 193 | + "# Optional: specify which boxes are positive/negative prompts\n", |
| 194 | + "box_labels = [True] # True=include, False=exclude\n", |
| 195 | + "\n", |
| 196 | + "# Generate masks\n", |
| 197 | + "sam3.generate_masks_by_boxes(boxes, box_labels, box_crs=\"EPSG:4326\")" |
| 198 | + ] |
| 199 | + }, |
| 200 | + { |
| 201 | + "cell_type": "code", |
| 202 | + "execution_count": null, |
| 203 | + "metadata": {}, |
| 204 | + "outputs": [], |
| 205 | + "source": [ |
| 206 | + "sam3.show_boxes(boxes, box_labels, box_crs=\"EPSG:4326\")" |
| 207 | + ] |
| 208 | + }, |
| 209 | + { |
| 210 | + "cell_type": "markdown", |
| 211 | + "metadata": {}, |
| 212 | + "source": [ |
| 213 | + "" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "markdown", |
| 218 | + "metadata": {}, |
| 219 | + "source": [ |
| 220 | + "## Show the results" |
| 221 | + ] |
| 222 | + }, |
| 223 | + { |
| 224 | + "cell_type": "code", |
| 225 | + "execution_count": null, |
| 226 | + "metadata": {}, |
| 227 | + "outputs": [], |
| 228 | + "source": [ |
| 229 | + "sam3.show_anns()" |
| 230 | + ] |
| 231 | + }, |
| 232 | + { |
| 233 | + "cell_type": "markdown", |
| 234 | + "metadata": {}, |
| 235 | + "source": [ |
| 236 | + "## Save Masks\n", |
| 237 | + "\n", |
| 238 | + "Save the generated masks to a file. If the input is a GeoTIFF, the output will be a GeoTIFF with the same georeferencing. Otherwise, it will be saved as PNG." |
| 239 | + ] |
| 240 | + }, |
| 241 | + { |
| 242 | + "cell_type": "code", |
| 243 | + "execution_count": null, |
| 244 | + "metadata": {}, |
| 245 | + "outputs": [], |
| 246 | + "source": [ |
| 247 | + "# Save masks with unique values for each object\n", |
| 248 | + "# Since satellite.tif is a GeoTIFF, the output will also be a GeoTIFF\n", |
| 249 | + "sam3.save_masks(output=\"building_masks.tif\", unique=True)" |
| 250 | + ] |
| 251 | + }, |
| 252 | + { |
| 253 | + "cell_type": "code", |
| 254 | + "execution_count": null, |
| 255 | + "metadata": {}, |
| 256 | + "outputs": [], |
| 257 | + "source": [ |
| 258 | + "# Save as binary mask (all foreground pixels are 255)\n", |
| 259 | + "sam3.save_masks(output=\"building_masks_binary.tif\", unique=False)" |
| 260 | + ] |
| 261 | + }, |
| 262 | + { |
| 263 | + "cell_type": "markdown", |
| 264 | + "metadata": {}, |
| 265 | + "source": [ |
| 266 | + "## Save Masks with Confidence Scores\n", |
| 267 | + "\n", |
| 268 | + "You can also save the confidence scores for each mask. The scores indicate the model's confidence for each predicted mask." |
| 269 | + ] |
| 270 | + }, |
| 271 | + { |
| 272 | + "cell_type": "code", |
| 273 | + "execution_count": null, |
| 274 | + "metadata": {}, |
| 275 | + "outputs": [], |
| 276 | + "source": [ |
| 277 | + "# Save masks and confidence scores\n", |
| 278 | + "# Each pixel in the scores image will have the confidence value of its mask\n", |
| 279 | + "sam3.save_masks(\n", |
| 280 | + " output=\"building_masks_with_scores.tif\",\n", |
| 281 | + " save_scores=\"building_scores.tif\",\n", |
| 282 | + " unique=True,\n", |
| 283 | + ")" |
| 284 | + ] |
| 285 | + }, |
| 286 | + { |
| 287 | + "cell_type": "code", |
| 288 | + "execution_count": null, |
| 289 | + "metadata": {}, |
| 290 | + "outputs": [], |
| 291 | + "source": [ |
| 292 | + "sam3.show_masks(cmap=\"coolwarm\")" |
| 293 | + ] |
| 294 | + }, |
| 295 | + { |
| 296 | + "cell_type": "markdown", |
| 297 | + "metadata": {}, |
| 298 | + "source": [ |
| 299 | + "" |
| 300 | + ] |
| 301 | + }, |
| 302 | + { |
| 303 | + "cell_type": "markdown", |
| 304 | + "metadata": {}, |
| 305 | + "source": [ |
| 306 | + "### Visualize Confidence Scores\n", |
| 307 | + "\n", |
| 308 | + "Let's visualize the confidence scores to see which masks have higher confidence:" |
| 309 | + ] |
| 310 | + }, |
| 311 | + { |
| 312 | + "cell_type": "code", |
| 313 | + "execution_count": null, |
| 314 | + "metadata": {}, |
| 315 | + "outputs": [], |
| 316 | + "source": [ |
| 317 | + "m.add_raster(\"building_masks.tif\", layer_name=\"Building masks\", visible=False)\n", |
| 318 | + "m.add_raster(\n", |
| 319 | + " \"building_scores.tif\",\n", |
| 320 | + " layer_name=\"Building scores\",\n", |
| 321 | + " cmap=\"coolwarm\",\n", |
| 322 | + " opacity=0.8,\n", |
| 323 | + " nodata=0,\n", |
| 324 | + ")\n", |
| 325 | + "m" |
| 326 | + ] |
| 327 | + }, |
| 328 | + { |
| 329 | + "cell_type": "markdown", |
| 330 | + "metadata": {}, |
| 331 | + "source": [ |
| 332 | + "" |
| 333 | + ] |
| 334 | + } |
| 335 | + ], |
| 336 | + "metadata": { |
| 337 | + "kernelspec": { |
| 338 | + "display_name": "geo", |
| 339 | + "language": "python", |
| 340 | + "name": "python3" |
| 341 | + }, |
| 342 | + "language_info": { |
| 343 | + "codemirror_mode": { |
| 344 | + "name": "ipython", |
| 345 | + "version": 3 |
| 346 | + }, |
| 347 | + "file_extension": ".py", |
| 348 | + "mimetype": "text/x-python", |
| 349 | + "name": "python", |
| 350 | + "nbconvert_exporter": "python", |
| 351 | + "pygments_lexer": "ipython3", |
| 352 | + "version": "3.12.2" |
| 353 | + } |
| 354 | + }, |
| 355 | + "nbformat": 4, |
| 356 | + "nbformat_minor": 2 |
| 357 | +} |
0 commit comments