Skip to content

High loss when using bayesian lstm instead of standard lstm #100

@amroghoneim

Description

@amroghoneim

I am trying to implement a model using the bayesian lstm layer given I already have a model that relies on lstm and it gets good results for a classification task.
When I use the bayesian layer the loss becomes very high and the accuracy doesn't converge much. I tried changing the model's hyperparameters (especially prior variables and posterior_rho) but didn't that much. I also added sharpen=True for loss sharpening but nothing changed.

The model:

# -*- coding: utf-8 -*-
import torch
import torch.nn as nn
##### Bayesian version #####
from layers.lstm_bayesian_layer import BayesianLSTM
from blitz.utils import variational_estimator
from layers.linear_bayesian_layer import BayesianLinear

from layers.attention import Attention, NoQueryAttention
from layers.squeeze_embedding import SqueezeEmbedding

@variational_estimator
class LSTM_BAYES_RNN(nn.Module):
    def __init__(self, embedding_matrix, opt):
        super(LSTM_BAYES_RNN, self).__init__()
        self.lstm = BayesianLSTM(opt.embed_dim*2, opt.hidden_dim, bias=True, freeze = False,
                prior_sigma_1 = 5,
                prior_sigma_2 = 5,
                posterior_rho_init=1,
                sharpen=True)
                #  prior_pi = 1,
                #  posterior_mu_init = 0,
                #  posterior_rho_init = -6.0,
        self.opt = opt
        self.embed = nn.Embedding.from_pretrained(torch.tensor(embedding_matrix, dtype=torch.float))
        self.squeeze_embedding = SqueezeEmbedding()
        # self.dense = BayesianLinear(opt.hidden_dim, opt.polarities_dim, bias=True, freeze = False, 
                          # prior_sigma_1 = 10, prior_sigma_2 = 10, posterior_rho_init  = 5 )
        self.attention = NoQueryAttention(opt.hidden_dim+opt.embed_dim, score_function='bi_linear')

        self.dense = nn.Linear(opt.hidden_dim, opt.polarities_dim)

    def forward(self, inputs):
        text_indices, aspect_indices = inputs[0], inputs[1]
        x_len = torch.sum(text_indices != 0, dim=-1)
        x_len_max = torch.max(x_len)
        aspect_len = torch.sum(aspect_indices != 0, dim=-1).float()

        x = self.embed(text_indices)
        x = self.squeeze_embedding(x, x_len)
        aspect = self.embed(aspect_indices)
        aspect_pool = torch.div(torch.sum(aspect, dim=1), aspect_len.unsqueeze(1))
        aspect = aspect_pool.unsqueeze(1).expand(-1, x_len_max, -1)
        x = torch.cat((aspect, x), dim=-1)

        h, (_, _) = self.lstm(x)
        ha = torch.cat((h, aspect), dim=-1)
        _, score = self.attention(ha)
        output = torch.squeeze(torch.bmm(score, h), dim=1)
        out = self.dense(output)
        return out

in the training I have

                # bayesian loss calculation 
                pi_weight = minibatch_weight(batch_idx=i_batch, num_batches=self.opt.batch_size)

                loss = self.model.sample_elbo(
                        inputs=inputs,
                        labels=targets,
                        criterion=nn.CrossEntropyLoss(),
                        sample_nbr=10,
                        # complexity_cost_weight=1/len(self.trainset))
                        complexity_cost_weight = pi_weight)
      
                ##################

                loss.backward()
                optimizer.step()

                # take 3 outputs per example
                outputs = torch.stack([self.model(inputs) for i in range(3)])
                preds = torch.mean(outputs, axis=0)

What's the problem here?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions