|
| 1 | +""" |
| 2 | +Tests for exogenous variable prefix matching bug fix. |
| 3 | +
|
| 4 | +This test module verifies that exogenous variables are correctly matched to their |
| 5 | +corresponding concepts using exact prefix matching, avoiding substring matching bugs. |
| 6 | +
|
| 7 | +Bug context: Previously, using substring matching like `"OtherCar" in "exog_OtherCarCost_state_0"` |
| 8 | +would incorrectly match, causing concepts to receive exogenous variables from other concepts |
| 9 | +with similar names. |
| 10 | +
|
| 11 | +Fix: Use exact prefix matching with `startswith(f"exog_{label_name}_state_")` to ensure |
| 12 | +concepts only receive their own exogenous variables. |
| 13 | +""" |
| 14 | +import unittest |
| 15 | +import torch |
| 16 | +from torch_concepts.annotations import Annotations, AxisAnnotation |
| 17 | +from torch_concepts.nn import BipartiteModel, LinearCC |
| 18 | +from torch_concepts.nn import LazyConstructor |
| 19 | +from torch_concepts.nn.modules.low.encoders.exogenous import LinearZU |
| 20 | +from torch.distributions import Bernoulli, Categorical |
| 21 | + |
| 22 | + |
| 23 | +class TestExogenousPrefixMatching(unittest.TestCase): |
| 24 | + """Test exact prefix matching for exogenous variables.""" |
| 25 | + |
| 26 | + def test_substring_overlap_concepts(self): |
| 27 | + """Test concepts with substring overlap don't cross-assign exogenous variables. |
| 28 | + |
| 29 | + This is the core bug fix test: concepts like 'Car' and 'CarCost' should not |
| 30 | + have their exogenous variables mixed up due to substring matching. |
| 31 | + """ |
| 32 | + # Create concepts where one name is a substring of another |
| 33 | + concept_names = ['Car', 'CarCost', 'Driver', 'Task'] |
| 34 | + |
| 35 | + # Create annotations with different cardinalities to make exogenous counts distinct |
| 36 | + metadata = { |
| 37 | + 'Car': {'distribution': Categorical, 'type': 'discrete'}, |
| 38 | + 'CarCost': {'distribution': Categorical, 'type': 'discrete'}, |
| 39 | + 'Driver': {'distribution': Categorical, 'type': 'discrete'}, |
| 40 | + 'Task': {'distribution': Bernoulli, 'type': 'discrete'} |
| 41 | + } |
| 42 | + cardinalities = (2, 4, 3, 1) |
| 43 | + |
| 44 | + annotations = Annotations({ |
| 45 | + 1: AxisAnnotation( |
| 46 | + labels=tuple(concept_names), |
| 47 | + cardinalities=cardinalities, |
| 48 | + metadata=metadata |
| 49 | + ) |
| 50 | + }) |
| 51 | + |
| 52 | + # Create bipartite model with source_exogenous |
| 53 | + model = BipartiteModel( |
| 54 | + task_names=['Task'], |
| 55 | + input_size=100, |
| 56 | + annotations=annotations, |
| 57 | + encoder=LazyConstructor(torch.nn.Linear), |
| 58 | + predictor=LazyConstructor(LinearCC), |
| 59 | + source_exogenous=LazyConstructor(LinearZU, exogenous_size=16), |
| 60 | + use_source_exogenous=True |
| 61 | + ) |
| 62 | + |
| 63 | + # Check that variables were created with correct parent counts |
| 64 | + car_vars = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'Car'] |
| 65 | + carcost_vars = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'CarCost'] |
| 66 | + driver_vars = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'Driver'] |
| 67 | + |
| 68 | + self.assertEqual(len(car_vars), 1) |
| 69 | + self.assertEqual(len(carcost_vars), 1) |
| 70 | + self.assertEqual(len(driver_vars), 1) |
| 71 | + |
| 72 | + car_var = car_vars[0] |
| 73 | + carcost_var = carcost_vars[0] |
| 74 | + driver_var = driver_vars[0] |
| 75 | + |
| 76 | + # Check that each concept has the correct number of parent variables |
| 77 | + # With source_exogenous, each concept should have exogenous variables matching its cardinality |
| 78 | + self.assertEqual(len(car_var.parents), 2, |
| 79 | + f"Car should have 2 exogenous parent variables, got {len(car_var.parents)}") |
| 80 | + self.assertEqual(len(carcost_var.parents), 4, |
| 81 | + f"CarCost should have 4 exogenous parent variables, got {len(carcost_var.parents)}") |
| 82 | + self.assertEqual(len(driver_var.parents), 3, |
| 83 | + f"Driver should have 3 exogenous parent variables, got {len(driver_var.parents)}") |
| 84 | + |
| 85 | + # Verify parent names start with correct prefix (not substrings of other concepts) |
| 86 | + car_parent_names = [p if isinstance(p, str) else p.concepts[0] for p in car_var.parents] |
| 87 | + for name in car_parent_names: |
| 88 | + self.assertTrue(name.startswith('exog_Car_state_'), |
| 89 | + f"Car parent {name} should start with 'exog_Car_state_'") |
| 90 | + self.assertFalse(name.startswith('exog_CarCost_state_'), |
| 91 | + f"Car should not have CarCost exogenous variable: {name}") |
| 92 | + |
| 93 | + carcost_parent_names = [p if isinstance(p, str) else p.concepts[0] for p in carcost_var.parents] |
| 94 | + for name in carcost_parent_names: |
| 95 | + self.assertTrue(name.startswith('exog_CarCost_state_'), |
| 96 | + f"CarCost parent {name} should start with 'exog_CarCost_state_'") |
| 97 | + |
| 98 | + def test_exact_prefix_matching_with_similar_names(self): |
| 99 | + """Test exact prefix matching with highly similar concept names. |
| 100 | + |
| 101 | + Tests edge cases like 'A', 'AB', 'ABC' to ensure no cross-contamination. |
| 102 | + """ |
| 103 | + concept_names = ['A', 'AB', 'ABC', 'Task'] |
| 104 | + |
| 105 | + metadata = { |
| 106 | + 'A': {'distribution': Categorical, 'type': 'discrete'}, |
| 107 | + 'AB': {'distribution': Categorical, 'type': 'discrete'}, |
| 108 | + 'ABC': {'distribution': Categorical, 'type': 'discrete'}, |
| 109 | + 'Task': {'distribution': Bernoulli, 'type': 'discrete'} |
| 110 | + } |
| 111 | + cardinalities = (2, 3, 4, 1) |
| 112 | + |
| 113 | + annotations = Annotations({ |
| 114 | + 1: AxisAnnotation( |
| 115 | + labels=tuple(concept_names), |
| 116 | + cardinalities=cardinalities, |
| 117 | + metadata=metadata |
| 118 | + ) |
| 119 | + }) |
| 120 | + |
| 121 | + model = BipartiteModel( |
| 122 | + task_names=['Task'], |
| 123 | + input_size=50, |
| 124 | + annotations=annotations, |
| 125 | + encoder=LazyConstructor(torch.nn.Linear), |
| 126 | + predictor=LazyConstructor(LinearCC), |
| 127 | + source_exogenous=LazyConstructor(LinearZU, exogenous_size=16), |
| 128 | + use_source_exogenous=True |
| 129 | + ) |
| 130 | + |
| 131 | + # Check each concept has only its own exogenous variables |
| 132 | + a_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'A'][0] |
| 133 | + ab_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'AB'][0] |
| 134 | + abc_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'ABC'][0] |
| 135 | + |
| 136 | + self.assertEqual(len(a_var.parents), 2, "A should have 2 exogenous variables") |
| 137 | + self.assertEqual(len(ab_var.parents), 3, "AB should have 3 exogenous variables") |
| 138 | + self.assertEqual(len(abc_var.parents), 4, "ABC should have 4 exogenous variables") |
| 139 | + |
| 140 | + # Verify exact prefix matching - A should not get AB or ABC variables |
| 141 | + a_parent_names = [p if isinstance(p, str) else p.concepts[0] for p in a_var.parents] |
| 142 | + for name in a_parent_names: |
| 143 | + self.assertTrue(name.startswith('exog_A_state_'), |
| 144 | + f"A parent should start with 'exog_A_state_', got {name}") |
| 145 | + # Make sure it's not 'exog_AB_state_' or 'exog_ABC_state_' |
| 146 | + self.assertFalse('exog_AB' in name or 'exog_ABC' in name, |
| 147 | + f"A should not have AB/ABC exogenous: {name}") |
| 148 | + |
| 149 | + def test_underscore_in_concept_names(self): |
| 150 | + """Test that underscores in concept names don't cause matching issues. |
| 151 | + |
| 152 | + Ensures that the '_state_' suffix in exogenous variable names is correctly |
| 153 | + used as part of the matching logic. |
| 154 | + """ |
| 155 | + concept_names = ['Age_Group', 'Age_Group_Risk', 'Task'] |
| 156 | + |
| 157 | + metadata = { |
| 158 | + 'Age_Group': {'distribution': Categorical, 'type': 'discrete'}, |
| 159 | + 'Age_Group_Risk': {'distribution': Categorical, 'type': 'discrete'}, |
| 160 | + 'Task': {'distribution': Bernoulli, 'type': 'discrete'} |
| 161 | + } |
| 162 | + cardinalities = (3, 5, 1) |
| 163 | + |
| 164 | + annotations = Annotations({ |
| 165 | + 1: AxisAnnotation( |
| 166 | + labels=tuple(concept_names), |
| 167 | + cardinalities=cardinalities, |
| 168 | + metadata=metadata |
| 169 | + ) |
| 170 | + }) |
| 171 | + |
| 172 | + model = BipartiteModel( |
| 173 | + task_names=['Task'], |
| 174 | + input_size=60, |
| 175 | + annotations=annotations, |
| 176 | + encoder=LazyConstructor(torch.nn.Linear), |
| 177 | + predictor=LazyConstructor(LinearCC), |
| 178 | + source_exogenous=LazyConstructor(LinearZU, exogenous_size=16), |
| 179 | + use_source_exogenous=True |
| 180 | + ) |
| 181 | + |
| 182 | + age_group_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'Age_Group'][0] |
| 183 | + age_group_risk_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'Age_Group_Risk'][0] |
| 184 | + |
| 185 | + self.assertEqual(len(age_group_var.parents), 3, |
| 186 | + "Age_Group should have 3 exogenous variables") |
| 187 | + self.assertEqual(len(age_group_risk_var.parents), 5, |
| 188 | + "Age_Group_Risk should have 5 exogenous variables") |
| 189 | + |
| 190 | + # Verify Age_Group doesn't get Age_Group_Risk's exogenous variables |
| 191 | + age_group_parent_names = [p if isinstance(p, str) else p.concepts[0] for p in age_group_var.parents] |
| 192 | + for name in age_group_parent_names: |
| 193 | + self.assertTrue(name.startswith('exog_Age_Group_state_'), |
| 194 | + f"Age_Group parent should start with 'exog_Age_Group_state_', got {name}") |
| 195 | + self.assertFalse(name.startswith('exog_Age_Group_Risk_state_'), |
| 196 | + f"Age_Group should not have Age_Group_Risk exogenous: {name}") |
| 197 | + |
| 198 | + def test_predictor_exogenous_filtering(self): |
| 199 | + """Test that predictor correctly filters exogenous variables for parent concepts. |
| 200 | + |
| 201 | + The predictor should only receive exogenous variables from its actual parents, |
| 202 | + not from concepts with similar names. |
| 203 | + """ |
| 204 | + concept_names = ['Other', 'OtherCar', 'OtherCarCost', 'Task'] |
| 205 | + |
| 206 | + metadata = { |
| 207 | + 'Other': {'distribution': Categorical, 'type': 'discrete'}, |
| 208 | + 'OtherCar': {'distribution': Categorical, 'type': 'discrete'}, |
| 209 | + 'OtherCarCost': {'distribution': Categorical, 'type': 'discrete'}, |
| 210 | + 'Task': {'distribution': Categorical, 'type': 'discrete'} |
| 211 | + } |
| 212 | + cardinalities = (2, 3, 4, 2) |
| 213 | + |
| 214 | + annotations = Annotations({ |
| 215 | + 1: AxisAnnotation( |
| 216 | + labels=tuple(concept_names), |
| 217 | + cardinalities=cardinalities, |
| 218 | + metadata=metadata |
| 219 | + ) |
| 220 | + }) |
| 221 | + |
| 222 | + model = BipartiteModel( |
| 223 | + task_names=['Task'], |
| 224 | + input_size=70, |
| 225 | + annotations=annotations, |
| 226 | + encoder=LazyConstructor(torch.nn.Linear), |
| 227 | + predictor=LazyConstructor(LinearCC), |
| 228 | + source_exogenous=LazyConstructor(LinearZU, exogenous_size=16), |
| 229 | + use_source_exogenous=True |
| 230 | + ) |
| 231 | + |
| 232 | + # Check that root concepts have correct exogenous parents |
| 233 | + other_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'Other'][0] |
| 234 | + othercar_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'OtherCar'][0] |
| 235 | + othercarcost_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'OtherCarCost'][0] |
| 236 | + |
| 237 | + self.assertEqual(len(other_var.parents), 2, |
| 238 | + "Other should have 2 exogenous variables") |
| 239 | + self.assertEqual(len(othercar_var.parents), 3, |
| 240 | + "OtherCar should have 3 exogenous variables") |
| 241 | + self.assertEqual(len(othercarcost_var.parents), 4, |
| 242 | + "OtherCarCost should have 4 exogenous variables") |
| 243 | + |
| 244 | + # Verify OtherCar doesn't get OtherCarCost's exogenous (the original bug!) |
| 245 | + othercar_parent_names = [p if isinstance(p, str) else p.concepts[0] for p in othercar_var.parents] |
| 246 | + for name in othercar_parent_names: |
| 247 | + self.assertTrue(name.startswith('exog_OtherCar_state_'), |
| 248 | + f"OtherCar parent should start with 'exog_OtherCar_state_', got {name}") |
| 249 | + self.assertFalse(name.startswith('exog_OtherCarCost_state_'), |
| 250 | + f"OtherCar should NOT have OtherCarCost exogenous: {name}") |
| 251 | + |
| 252 | + def test_no_exogenous_without_source_exogenous_flag(self): |
| 253 | + """Test that exogenous variables are not created when use_source_exogenous=False. |
| 254 | + |
| 255 | + This is a control test to ensure the exogenous feature is opt-in. |
| 256 | + """ |
| 257 | + concept_names = ['Car', 'CarCost', 'Task'] |
| 258 | + |
| 259 | + metadata = { |
| 260 | + 'Car': {'distribution': Categorical, 'type': 'discrete'}, |
| 261 | + 'CarCost': {'distribution': Categorical, 'type': 'discrete'}, |
| 262 | + 'Task': {'distribution': Bernoulli, 'type': 'discrete'} |
| 263 | + } |
| 264 | + cardinalities = (2, 4, 1) |
| 265 | + |
| 266 | + annotations = Annotations({ |
| 267 | + 1: AxisAnnotation( |
| 268 | + labels=tuple(concept_names), |
| 269 | + cardinalities=cardinalities, |
| 270 | + metadata=metadata |
| 271 | + ) |
| 272 | + }) |
| 273 | + |
| 274 | + # use_source_exogenous=False (default) |
| 275 | + model = BipartiteModel( |
| 276 | + task_names=['Task'], |
| 277 | + input_size=80, |
| 278 | + annotations=annotations, |
| 279 | + encoder=LazyConstructor(torch.nn.Linear), |
| 280 | + predictor=LazyConstructor(LinearCC), |
| 281 | + use_source_exogenous=False |
| 282 | + ) |
| 283 | + |
| 284 | + # Encoders should not have exogenous parents when source_exogenous=False |
| 285 | + car_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'Car'][0] |
| 286 | + carcost_var = [v for v in model.probabilistic_model.variables if v.concepts[0] == 'CarCost'][0] |
| 287 | + |
| 288 | + # Without source exogenous, root concepts should only have 'input' as parent, no exogenous variables |
| 289 | + self.assertEqual(len(car_var.parents), 1, |
| 290 | + "Car should have 1 parent (input) when use_source_exogenous=False") |
| 291 | + self.assertEqual(type(car_var.parents[0]).__name__, 'InputVariable', |
| 292 | + "Car's only parent should be InputVariable") |
| 293 | + |
| 294 | + # Verify no exogenous variables exist |
| 295 | + exog_vars = [v for v in model.probabilistic_model.variables if hasattr(v, 'name') and v.name.startswith('exog_')] |
| 296 | + self.assertEqual(len(exog_vars), 0, |
| 297 | + "No exogenous variables should exist when use_source_exogenous=False") |
| 298 | +if __name__ == '__main__': |
| 299 | + unittest.main() |
0 commit comments