-
Notifications
You must be signed in to change notification settings - Fork 3.9k
Description
🐛 Describe the bug
The first time a torch_geometric.nn.Sequential
object is initialised, the entire program runs twice.
This seems only to happen if the file name is a syntactically valid python function name.
The following code explains the problem well:
import torch_geometric.nn as pyg
print("before")
pyg.Sequential('x', [(lambda x: x, 'x -> y')])
print("after")
If this is saved in foo.py
, then python3 foo.py
prints
before
before
after
after
If this is saved in foo-bar.py
, then python3 foo-bar.py
prints
before
after
Versions
Collecting environment information...
PyTorch version: 2.7.1+cpu
Is debug build: False
CUDA used to build PyTorch: None
ROCM used to build PyTorch: N/A
OS: Arch Linux (x86_64)
GCC version: (GCC) 15.1.1 20250729
Clang version: 20.1.8
CMake version: Could not collect
Libc version: glibc-2.42
Python version: 3.13.5 (main, Jun 21 2025, 09:35:00) [GCC 15.1.1 20250425] (64-bit runtime)
Python platform: Linux-6.15.9-arch1-1-x86_64-with-glibc2.42
Is CUDA available: False
CUDA runtime version: No CUDA
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration: No CUDA
Nvidia driver version: No CUDA
cuDNN version: No CUDA
Is XPU available: False
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 16
On-line CPU(s) list: 0-15
Vendor ID: AuthenticAMD
Model name: AMD Ryzen 7 8845HS w/ Radeon 780M Graphics
CPU family: 25
Model: 117
Thread(s) per core: 2
Core(s) per socket: 8
Socket(s): 1
Stepping: 2
Frequency boost: enabled
CPU(s) scaling MHz: 24%
CPU max MHz: 5137.9038
CPU min MHz: 419.4210
BogoMIPS: 7585.66
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good amd_lbr_v2 nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 hw_pstate ssbd mba perfmon_v2 ibrs ibpb stibp ibrs_enhanced vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local user_shstk avx512_bf16 clzero irperf xsaveerptr rdpru wbnoinvd cppc arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold vgif x2avic v_spec_ctrl vnmi avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq rdpid overflow_recov succor smca fsrm flush_l1d
Virtualization: AMD-V
L1d cache: 256 KiB (8 instances)
L1i cache: 256 KiB (8 instances)
L2 cache: 8 MiB (8 instances)
L3 cache: 16 MiB (1 instance)
NUMA node(s): 1
NUMA node0 CPU(s): 0-15
Vulnerability Gather data sampling: Not affected
Vulnerability Ghostwrite: Not affected
Vulnerability Indirect target selection: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; Safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; STIBP always-on; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsa: Mitigation; Clear CPU buffers
Vulnerability Tsx async abort: Not affected
Versions of relevant libraries:
[pip3] numpy==2.3.2
[pip3] torch==2.7.1+cpu
[pip3] torch-geometric==2.6.1
[pip3] torchaudio==2.7.1+cpu
[pip3] torchvision==0.22.1+cpu
[pip3] triton==3.3.1
[conda] Could not collect