@@ -197,33 +197,6 @@ def adorn_percentages(
197197 :param percent_format: Whether to format as percentages
198198 :return: DataFrame with percentages and optional formatting and raw counts
199199
200- >>> data = {
201- ... "Category": ["A", "A", "B", "B", "C", "C", "A", "B", "C", "A"],
202- ... "Subcategory": ["X", "Y", "X", "Y", "X", "Y", "X", "Y", "X", "X"],
203- ... "Value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
204- ... }
205- >>> df = pd.DataFrame(data)
206-
207- Example of axis=row
208- >>> result = adorn_percentages(
209- ... df, "Category", "Subcategory", axis="row", fmt=True, include_ns=True
210- ... )
211- >>> print(result)
212- Subcategory Category X Y
213- 0 A 3 (75.0%) 1 (25.0%)
214- 1 B 1 (33.3%) 2 (66.7%)
215- 2 C 2 (66.7%) 1 (33.3%)
216- Total NaN 6 (60.0%) 4 (40.0%)
217-
218- >>> result = adorn_percentages(
219- ... df, "Category", "Subcategory", axis="all", fmt=True, include_ns=True
220- ... )
221- >>> print(result)
222- Subcategory Category X Y
223- 0 A 3 (42.9%) 1 (25.0%)
224- 1 B 1 (14.3%) 2 (50.0%)
225- 2 C 2 (28.6%) 1 (25.0%)
226- Total NaN 6 (100.0%) 4 (100.0%)
227200 """
228201 # Generate the crosstab using tabyl with the two specified columns
229202 pivot = pd .pivot_table (
0 commit comments