Carrying forward the discussions in #289 , it will be great to investigate cholesky decomposition errors further with tf.float32. Here's a good starting point -
import tensorflow as tf
tf.random.set_seed(42)
def cov(shape, dtype):
sigma = tf.random.normal((shape, shape), dtype=dtype)
return tf.linalg.cholesky(tf.matmul(sigma, sigma, transpose_a=True))
cov(10**4, tf.float32) # decomposition errors
cov(10**4, tf.float64) # works all good
Should I open this issue in TF side?