@@ -305,85 +305,4 @@ def forward(self, data: torch_geometric.data.Data):
305305 if key not in self .parameters ["keep_fields" ]:
306306 del data [key ]
307307
308- return data
309-
310- class AlexanderDual (torch_geometric .transforms .BaseTransform ):
311- r"""The Alexander dual of a Simplicial Complex `\sigma` denoted
312- `\bar{\sigma}` is the simplicial complex whose simplices are the
313- complements of the simplices of `\sigma`.
314-
315- Parameters
316- ----------
317- **kwargs : optional
318- Parameters for the transform.
319- """
320-
321- def __init__ (self , ** kwargs ):
322- super ().__init__ ()
323- self .type = "alexander_dual"
324- self .parameters = kwargs
325-
326- def forward (self , data : torch_geometric .data .Data ):
327- r"""Apply the transform to the input data.
328-
329- Parameters
330- ----------
331- data : torch_geometric.data.Data
332- The input data.
333-
334- Returns
335- -------
336- torch_geometric.data.Data
337- The transformed data.
338- """
339-
340- G = to_networkx (data )
341- S = SimplicialComplex (simplices = G )
342- S_star = SimplicialComplex ()
343-
344- nodes = set (S .nodes )
345- for s in S .simplices :
346- s_bar = frozenset (nodes - set (s ))
347- if s_bar not in S :
348- S_star .add_simplex (s )
349-
350- S_star
351-
352- return data
353-
354-
355- class RandomGraph (torch_geometric .transforms .BaseTransform ):
356- r"""A transform that generates a random graph from the input data.
357-
358- Parameters
359- ----------
360- **kwargs : optional
361- Parameters for the transform.
362- """
363-
364- def __init__ (self , ** kwargs ):
365- super ().__init__ ()
366- self .type = "random_graph"
367- self .parameters = kwargs
368-
369- def forward (self , data : torch_geometric .data .Data ):
370- r"""Apply the transform to the input data.
371-
372- Parameters
373- ----------
374- data : torch_geometric.data.Data
375- The input data.
376-
377- Returns
378- -------
379- torch_geometric.data.Data
380- The transformed data.
381- """
382-
383- G = to_networkx (data )
384- n = G .number_of_nodes ()
385- p = self .parameters ["p" ]
386- G = nx .fast_gnp_random_graph (n , p )
387- data = torch_geometric .utils .from_networkx (G )
388-
389- return data
308+ return data
0 commit comments