@@ -164,7 +164,7 @@ def gaussian(n):
164164 return random .gauss (1 , 1 )
165165
166166
167- @learn_with (AverageLearner1D , bounds = [ - 2 , 2 ] )
167+ @learn_with (AverageLearner1D , bounds = ( - 2 , 2 ) )
168168def noisy_peak (
169169 seed_x ,
170170 sigma : uniform (1.5 , 2.5 ),
@@ -271,8 +271,8 @@ def test_uniform_sampling2D(learner_type, f, learner_kwargs):
271271 "learner_type, bounds" ,
272272 [
273273 (Learner1D , (- 1 , 1 )),
274- (Learner2D , [( - 1 , 1 ), (- 1 , 1 )] ),
275- (LearnerND , [( - 1 , 1 ), (- 1 , 1 ), (- 1 , 1 )] ),
274+ (Learner2D , (( - 1 , 1 ), (- 1 , 1 )) ),
275+ (LearnerND , (( - 1 , 1 ), (- 1 , 1 ), (- 1 , 1 )) ),
276276 ],
277277)
278278def test_learner_accepts_lists (learner_type , bounds ):
@@ -480,7 +480,9 @@ def test_learner_performance_is_invariant_under_scaling(
480480 yscale = 1000 * random .random ()
481481
482482 l_kwargs = dict (learner_kwargs )
483- l_kwargs ["bounds" ] = xscale * np .array (l_kwargs ["bounds" ])
483+ bounds = xscale * np .array (l_kwargs ["bounds" ])
484+ bounds = tuple ((bounds ).tolist ()) # to satisfy typeguard tests
485+ l_kwargs ["bounds" ] = bounds
484486
485487 def scale_x (x ):
486488 if isinstance (learner , AverageLearner1D ):
0 commit comments