|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-unsafe |
| 8 | + |
| 9 | +import torch |
| 10 | +from executorch.backends.test.suite.flow import TestFlow |
| 11 | + |
| 12 | +from executorch.backends.test.suite.operators import ( |
| 13 | + dtype_test, |
| 14 | + operator_test, |
| 15 | + OperatorTest, |
| 16 | +) |
| 17 | + |
| 18 | + |
| 19 | +class FloorDivideModel(torch.nn.Module): |
| 20 | + def __init__(self): |
| 21 | + super().__init__() |
| 22 | + |
| 23 | + def forward(self, x, y): |
| 24 | + return torch.floor_divide(x, y) |
| 25 | + |
| 26 | + |
| 27 | +@operator_test |
| 28 | +class TestFloorDivide(OperatorTest): |
| 29 | + @dtype_test |
| 30 | + def test_floor_divide_dtype(self, flow: TestFlow, dtype) -> None: |
| 31 | + # Test with different dtypes |
| 32 | + model = FloorDivideModel().to(dtype) |
| 33 | + # Use values that won't cause division by zero |
| 34 | + x = torch.randint(-100, 100, (10, 10)).to(dtype) |
| 35 | + y = torch.full_like(x, 2) # Divisor of 2 |
| 36 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 37 | + |
| 38 | + def test_floor_divide_scalar_divisors(self, flow: TestFlow) -> None: |
| 39 | + # Test with different scalar divisors as tensors |
| 40 | + |
| 41 | + # Positive divisor |
| 42 | + x = torch.randint(-100, 100, (10, 10)) |
| 43 | + y = torch.full_like(x, 3) # Divisor of 3 |
| 44 | + self._test_op( |
| 45 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 46 | + ) |
| 47 | + |
| 48 | + # Negative divisor |
| 49 | + x = torch.randint(-100, 100, (10, 10)) |
| 50 | + y = torch.full_like(x, -2) # Divisor of -2 |
| 51 | + self._test_op( |
| 52 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 53 | + ) |
| 54 | + |
| 55 | + # Fractional divisor |
| 56 | + x = torch.randint(-100, 100, (10, 10)).float() |
| 57 | + y = torch.full_like(x, 2.5) # Divisor of 2.5 |
| 58 | + self._test_op( |
| 59 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 60 | + ) |
| 61 | + |
| 62 | + # Large divisor |
| 63 | + x = torch.randint(-1000, 1000, (10, 10)) |
| 64 | + y = torch.full_like(x, 100) # Divisor of 100 |
| 65 | + self._test_op( |
| 66 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 67 | + ) |
| 68 | + |
| 69 | + # Small divisor |
| 70 | + x = torch.randint(-100, 100, (10, 10)).float() |
| 71 | + y = torch.full_like(x, 0.5) # Divisor of 0.5 |
| 72 | + self._test_op( |
| 73 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 74 | + ) |
| 75 | + |
| 76 | + def test_floor_divide_tensor_divisors(self, flow: TestFlow) -> None: |
| 77 | + # Test with tensor divisors |
| 78 | + |
| 79 | + # Constant divisor tensor |
| 80 | + x = torch.randint(-100, 100, (10, 10)) |
| 81 | + y = torch.full_like(x, 2) # All elements are 2 |
| 82 | + self._test_op( |
| 83 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 84 | + ) |
| 85 | + |
| 86 | + # Random divisor tensor (non-zero) |
| 87 | + x = torch.randint(-100, 100, (10, 10)) |
| 88 | + y = torch.randint(1, 10, (10, 10)) # Positive divisors |
| 89 | + self._test_op( |
| 90 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 91 | + ) |
| 92 | + |
| 93 | + # Mixed positive and negative divisors |
| 94 | + x = torch.randint(-100, 100, (10, 10)) |
| 95 | + y = torch.randint(-10, 10, (10, 10)) |
| 96 | + # Replace zeros to avoid division by zero |
| 97 | + y[y == 0] = 1 |
| 98 | + self._test_op( |
| 99 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 100 | + ) |
| 101 | + |
| 102 | + # Broadcasting: scalar dividend, tensor divisor |
| 103 | + x = torch.tensor([10]) |
| 104 | + y = torch.arange(1, 5) # [1, 2, 3, 4] |
| 105 | + self._test_op( |
| 106 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 107 | + ) |
| 108 | + |
| 109 | + # Broadcasting: tensor dividend, scalar divisor |
| 110 | + x = torch.arange(-10, 10) |
| 111 | + y = torch.tensor([2]) |
| 112 | + self._test_op( |
| 113 | + FloorDivideModel(), (x, y), flow, generate_random_test_inputs=False |
| 114 | + ) |
| 115 | + |
| 116 | + def test_floor_divide_shapes(self, flow: TestFlow) -> None: |
| 117 | + # Test with different tensor shapes |
| 118 | + model = FloorDivideModel() |
| 119 | + |
| 120 | + # 1D tensor |
| 121 | + x = torch.randint(-100, 100, (20,)) |
| 122 | + y = torch.full_like(x, 2) # Divisor of 2 |
| 123 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 124 | + |
| 125 | + # 2D tensor |
| 126 | + x = torch.randint(-100, 100, (5, 10)) |
| 127 | + y = torch.full_like(x, 2) # Divisor of 2 |
| 128 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 129 | + |
| 130 | + # 3D tensor |
| 131 | + x = torch.randint(-100, 100, (3, 4, 5)) |
| 132 | + y = torch.full_like(x, 2) # Divisor of 2 |
| 133 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 134 | + |
| 135 | + # 4D tensor |
| 136 | + x = torch.randint(-100, 100, (2, 3, 4, 5)) |
| 137 | + y = torch.full_like(x, 2) # Divisor of 2 |
| 138 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 139 | + |
| 140 | + # 5D tensor |
| 141 | + x = torch.randint(-100, 100, (2, 2, 3, 4, 5)) |
| 142 | + y = torch.full_like(x, 2) # Divisor of 2 |
| 143 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 144 | + |
| 145 | + def test_floor_divide_values(self, flow: TestFlow) -> None: |
| 146 | + # Test with different value ranges |
| 147 | + model = FloorDivideModel() |
| 148 | + |
| 149 | + # Test with specific dividend values |
| 150 | + x = torch.tensor([-7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7]) |
| 151 | + |
| 152 | + # Divide by 2 |
| 153 | + y = torch.tensor([2]).expand_as(x).clone() |
| 154 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 155 | + |
| 156 | + # Divide by -2 |
| 157 | + y = torch.tensor([-2]).expand_as(x).clone() |
| 158 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 159 | + |
| 160 | + # Divide by 3 |
| 161 | + y = torch.tensor([3]).expand_as(x).clone() |
| 162 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 163 | + |
| 164 | + # Divide by -3 |
| 165 | + y = torch.tensor([-3]).expand_as(x).clone() |
| 166 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 167 | + |
| 168 | + # Test with floating point values |
| 169 | + x = torch.tensor( |
| 170 | + [-3.8, -3.5, -3.2, -0.8, -0.5, -0.2, 0.0, 0.2, 0.5, 0.8, 3.2, 3.5, 3.8] |
| 171 | + ) |
| 172 | + |
| 173 | + # Divide by 2.0 |
| 174 | + y = torch.tensor([2.0]).expand_as(x).clone() |
| 175 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 176 | + |
| 177 | + # Divide by -2.0 |
| 178 | + y = torch.tensor([-2.0]).expand_as(x).clone() |
| 179 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 180 | + |
| 181 | + def test_floor_divide_edge_cases(self, flow: TestFlow) -> None: |
| 182 | + # Test edge cases |
| 183 | + model = FloorDivideModel() |
| 184 | + |
| 185 | + # Zero dividend |
| 186 | + x = torch.zeros(10) |
| 187 | + y = torch.full_like(x, 2) |
| 188 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 189 | + |
| 190 | + # Division with remainder |
| 191 | + x = torch.tensor([1, 3, 5, 7, 9]) |
| 192 | + y = torch.full_like(x, 2) |
| 193 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 194 | + |
| 195 | + # Tensor with infinity |
| 196 | + x = torch.tensor([float("inf"), float("-inf"), 10.0, -10.0]) |
| 197 | + y = torch.full_like(x, 2) |
| 198 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 199 | + |
| 200 | + # Tensor with NaN |
| 201 | + x = torch.tensor([float("nan"), 10.0, -10.0]) |
| 202 | + y = torch.full_like(x, 2) |
| 203 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 204 | + |
| 205 | + # Very large values |
| 206 | + x = torch.tensor([1e10, -1e10]) |
| 207 | + y = torch.full_like(x, 3) |
| 208 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
| 209 | + |
| 210 | + # Very small values |
| 211 | + x = torch.tensor([1e-10, -1e-10]) |
| 212 | + y = torch.full_like(x, 2) |
| 213 | + self._test_op(model, (x, y), flow, generate_random_test_inputs=False) |
0 commit comments