|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +# pyre-unsafe |
| 8 | + |
| 9 | +from typing import Optional, Tuple, Union |
| 10 | + |
| 11 | +import torch |
| 12 | +from executorch.backends.test.suite.flow import TestFlow |
| 13 | + |
| 14 | +from executorch.backends.test.suite.operators import ( |
| 15 | + dtype_test, |
| 16 | + operator_test, |
| 17 | + OperatorTest, |
| 18 | +) |
| 19 | + |
| 20 | + |
| 21 | +class ModelWithSize(torch.nn.Module): |
| 22 | + def __init__( |
| 23 | + self, |
| 24 | + size: Optional[Tuple[int, int]] = None, |
| 25 | + align_corners: Optional[bool] = None, |
| 26 | + ): |
| 27 | + super().__init__() |
| 28 | + self.size = size |
| 29 | + self.align_corners = align_corners |
| 30 | + |
| 31 | + def forward(self, x): |
| 32 | + return torch.nn.functional.interpolate( |
| 33 | + x, size=self.size, mode="bilinear", align_corners=self.align_corners |
| 34 | + ) |
| 35 | + |
| 36 | + |
| 37 | +class ModelWithScale(torch.nn.Module): |
| 38 | + def __init__( |
| 39 | + self, |
| 40 | + scale_factor: Union[float, Tuple[float, float]] = 2.0, |
| 41 | + align_corners: Optional[bool] = None, |
| 42 | + ): |
| 43 | + super().__init__() |
| 44 | + self.scale_factor = scale_factor |
| 45 | + self.align_corners = align_corners |
| 46 | + |
| 47 | + def forward(self, x): |
| 48 | + return torch.nn.functional.interpolate( |
| 49 | + x, |
| 50 | + scale_factor=self.scale_factor, |
| 51 | + mode="bilinear", |
| 52 | + align_corners=self.align_corners, |
| 53 | + ) |
| 54 | + |
| 55 | + |
| 56 | +@operator_test |
| 57 | +class TestUpsampleBilinear2d(OperatorTest): |
| 58 | + @dtype_test |
| 59 | + def test_upsample_bilinear2d_dtype(self, flow: TestFlow, dtype) -> None: |
| 60 | + # Input shape: (batch_size, channels, height, width) |
| 61 | + model = ModelWithSize(size=(10, 10), align_corners=False).to(dtype) |
| 62 | + self._test_op(model, (torch.rand(2, 3, 5, 5).to(dtype),), flow) |
| 63 | + |
| 64 | + def test_upsample_bilinear2d_sizes(self, flow: TestFlow) -> None: |
| 65 | + # Test with different input and output sizes |
| 66 | + |
| 67 | + # Small input, larger output |
| 68 | + self._test_op( |
| 69 | + ModelWithSize(size=(8, 8), align_corners=False), |
| 70 | + (torch.randn(1, 2, 4, 4),), |
| 71 | + flow, |
| 72 | + ) |
| 73 | + self._test_op( |
| 74 | + ModelWithSize(size=(8, 8), align_corners=True), |
| 75 | + (torch.randn(1, 2, 4, 4),), |
| 76 | + flow, |
| 77 | + ) |
| 78 | + |
| 79 | + # Larger input, even larger output |
| 80 | + self._test_op( |
| 81 | + ModelWithSize(size=(16, 16), align_corners=False), |
| 82 | + (torch.randn(1, 2, 8, 8),), |
| 83 | + flow, |
| 84 | + ) |
| 85 | + self._test_op( |
| 86 | + ModelWithSize(size=(16, 16), align_corners=True), |
| 87 | + (torch.randn(1, 2, 8, 8),), |
| 88 | + flow, |
| 89 | + ) |
| 90 | + |
| 91 | + # Different height and width |
| 92 | + self._test_op( |
| 93 | + ModelWithSize(size=(16, 8), align_corners=False), |
| 94 | + (torch.randn(1, 2, 8, 4),), |
| 95 | + flow, |
| 96 | + ) |
| 97 | + self._test_op( |
| 98 | + ModelWithSize(size=(16, 8), align_corners=True), |
| 99 | + (torch.randn(1, 2, 8, 4),), |
| 100 | + flow, |
| 101 | + ) |
| 102 | + |
| 103 | + # Asymmetric upsampling |
| 104 | + self._test_op( |
| 105 | + ModelWithSize(size=(20, 10), align_corners=False), |
| 106 | + (torch.randn(1, 2, 5, 5),), |
| 107 | + flow, |
| 108 | + ) |
| 109 | + self._test_op( |
| 110 | + ModelWithSize(size=(20, 10), align_corners=True), |
| 111 | + (torch.randn(1, 2, 5, 5),), |
| 112 | + flow, |
| 113 | + ) |
| 114 | + |
| 115 | + def test_upsample_bilinear2d_scale_factors(self, flow: TestFlow) -> None: |
| 116 | + # Test with different scale factors |
| 117 | + |
| 118 | + # Scale by 2 |
| 119 | + self._test_op( |
| 120 | + ModelWithScale(scale_factor=2.0, align_corners=False), |
| 121 | + (torch.randn(1, 2, 5, 5),), |
| 122 | + flow, |
| 123 | + ) |
| 124 | + self._test_op( |
| 125 | + ModelWithScale(scale_factor=2.0, align_corners=True), |
| 126 | + (torch.randn(1, 2, 5, 5),), |
| 127 | + flow, |
| 128 | + ) |
| 129 | + |
| 130 | + # Scale by 3 |
| 131 | + self._test_op( |
| 132 | + ModelWithScale(scale_factor=3.0, align_corners=False), |
| 133 | + (torch.randn(1, 2, 5, 5),), |
| 134 | + flow, |
| 135 | + ) |
| 136 | + self._test_op( |
| 137 | + ModelWithScale(scale_factor=3.0, align_corners=True), |
| 138 | + (torch.randn(1, 2, 5, 5),), |
| 139 | + flow, |
| 140 | + ) |
| 141 | + |
| 142 | + # Scale by 1.5 |
| 143 | + self._test_op( |
| 144 | + ModelWithScale(scale_factor=1.5, align_corners=False), |
| 145 | + (torch.randn(1, 2, 6, 6),), |
| 146 | + flow, |
| 147 | + ) |
| 148 | + self._test_op( |
| 149 | + ModelWithScale(scale_factor=1.5, align_corners=True), |
| 150 | + (torch.randn(1, 2, 6, 6),), |
| 151 | + flow, |
| 152 | + ) |
| 153 | + |
| 154 | + # Different scales for height and width |
| 155 | + self._test_op( |
| 156 | + ModelWithScale(scale_factor=(2.0, 1.5), align_corners=False), |
| 157 | + (torch.randn(1, 2, 5, 6),), |
| 158 | + flow, |
| 159 | + generate_random_test_inputs=False, |
| 160 | + ) |
| 161 | + self._test_op( |
| 162 | + ModelWithScale(scale_factor=(2.0, 1.5), align_corners=True), |
| 163 | + (torch.randn(1, 2, 5, 6),), |
| 164 | + flow, |
| 165 | + generate_random_test_inputs=False, |
| 166 | + ) |
| 167 | + |
| 168 | + def test_upsample_bilinear2d_batch_sizes(self, flow: TestFlow) -> None: |
| 169 | + # Test with different batch sizes |
| 170 | + self._test_op( |
| 171 | + ModelWithSize(size=(10, 10), align_corners=False), |
| 172 | + (torch.randn(1, 3, 5, 5),), |
| 173 | + flow, |
| 174 | + ) |
| 175 | + self._test_op( |
| 176 | + ModelWithSize(size=(10, 10), align_corners=False), |
| 177 | + (torch.randn(4, 3, 5, 5),), |
| 178 | + flow, |
| 179 | + ) |
| 180 | + self._test_op( |
| 181 | + ModelWithSize(size=(10, 10), align_corners=False), |
| 182 | + (torch.randn(8, 3, 5, 5),), |
| 183 | + flow, |
| 184 | + ) |
| 185 | + |
| 186 | + def test_upsample_bilinear2d_channels(self, flow: TestFlow) -> None: |
| 187 | + # Test with different numbers of channels |
| 188 | + self._test_op( |
| 189 | + ModelWithSize(size=(10, 10), align_corners=False), |
| 190 | + (torch.randn(2, 1, 5, 5),), |
| 191 | + flow, |
| 192 | + ) # Grayscale |
| 193 | + self._test_op( |
| 194 | + ModelWithSize(size=(10, 10), align_corners=False), |
| 195 | + (torch.randn(2, 3, 5, 5),), |
| 196 | + flow, |
| 197 | + ) # RGB |
| 198 | + self._test_op( |
| 199 | + ModelWithSize(size=(10, 10), align_corners=False), |
| 200 | + (torch.randn(2, 4, 5, 5),), |
| 201 | + flow, |
| 202 | + ) # RGBA |
| 203 | + self._test_op( |
| 204 | + ModelWithSize(size=(10, 10), align_corners=False), |
| 205 | + (torch.randn(2, 16, 5, 5),), |
| 206 | + flow, |
| 207 | + ) # Multi-channel |
| 208 | + |
| 209 | + def test_upsample_bilinear2d_same_size(self, flow: TestFlow) -> None: |
| 210 | + # Test with output size same as input size (should be identity) |
| 211 | + self._test_op( |
| 212 | + ModelWithSize(size=(5, 5), align_corners=False), |
| 213 | + (torch.randn(2, 3, 5, 5),), |
| 214 | + flow, |
| 215 | + generate_random_test_inputs=False, |
| 216 | + ) |
| 217 | + self._test_op( |
| 218 | + ModelWithSize(size=(5, 5), align_corners=True), |
| 219 | + (torch.randn(2, 3, 5, 5),), |
| 220 | + flow, |
| 221 | + generate_random_test_inputs=False, |
| 222 | + ) |
| 223 | + self._test_op( |
| 224 | + ModelWithScale(scale_factor=1.0, align_corners=False), |
| 225 | + (torch.randn(2, 3, 5, 5),), |
| 226 | + flow, |
| 227 | + generate_random_test_inputs=False, |
| 228 | + ) |
| 229 | + self._test_op( |
| 230 | + ModelWithScale(scale_factor=1.0, align_corners=True), |
| 231 | + (torch.randn(2, 3, 5, 5),), |
| 232 | + flow, |
| 233 | + generate_random_test_inputs=False, |
| 234 | + ) |
| 235 | + |
| 236 | + def test_upsample_bilinear2d_downsampling(self, flow: TestFlow) -> None: |
| 237 | + # Test downsampling |
| 238 | + self._test_op( |
| 239 | + ModelWithSize(size=(4, 4), align_corners=False), |
| 240 | + (torch.randn(2, 3, 8, 8),), |
| 241 | + flow, |
| 242 | + ) |
| 243 | + self._test_op( |
| 244 | + ModelWithSize(size=(4, 4), align_corners=True), |
| 245 | + (torch.randn(2, 3, 8, 8),), |
| 246 | + flow, |
| 247 | + ) |
| 248 | + self._test_op( |
| 249 | + ModelWithScale(scale_factor=0.5, align_corners=False), |
| 250 | + (torch.randn(2, 3, 8, 8),), |
| 251 | + flow, |
| 252 | + generate_random_test_inputs=False, |
| 253 | + ) |
| 254 | + self._test_op( |
| 255 | + ModelWithScale(scale_factor=0.5, align_corners=True), |
| 256 | + (torch.randn(2, 3, 8, 8),), |
| 257 | + flow, |
| 258 | + generate_random_test_inputs=False, |
| 259 | + ) |
| 260 | + |
| 261 | + # Test with non-integer downsampling factor |
| 262 | + self._test_op( |
| 263 | + ModelWithScale(scale_factor=0.75, align_corners=False), |
| 264 | + (torch.randn(2, 3, 8, 8),), |
| 265 | + flow, |
| 266 | + generate_random_test_inputs=False, |
| 267 | + ) |
| 268 | + self._test_op( |
| 269 | + ModelWithScale(scale_factor=0.75, align_corners=True), |
| 270 | + (torch.randn(2, 3, 8, 8),), |
| 271 | + flow, |
| 272 | + generate_random_test_inputs=False, |
| 273 | + ) |
0 commit comments