@@ -3521,9 +3521,10 @@ def _reduce_vals_and_metadata(self, *, dtype=NO_DEFAULT, requires_metadata):
35213521
35223522 flat_size = []
35233523 start = 0
3524+ sorting_index = 0
35243525
35253526 def add_single_value (value , key , metadata_dict , dtype , shape , flat_size ):
3526- nonlocal start
3527+ nonlocal start , sorting_index
35273528 n = value .element_size () * value .numel ()
35283529 if need_padding :
35293530 pad = n % 8
@@ -3541,7 +3542,10 @@ def add_single_value(value, key, metadata_dict, dtype, shape, flat_size):
35413542 start ,
35423543 stop ,
35433544 pad ,
3545+ flat_size [- 1 ],
3546+ sorting_index ,
35443547 )
3548+ sorting_index = sorting_index + 1
35453549 start = stop
35463550
35473551 def assign (
@@ -10395,6 +10399,7 @@ def to(self, *args, **kwargs) -> T:
1039510399 pin_memory = non_blocking_pin ,
1039610400 num_threads = num_threads ,
1039710401 non_blocking = non_blocking ,
10402+ compilable = is_dynamo_compiling (),
1039810403 )
1039910404
1040010405 if non_blocking is None :
@@ -10452,14 +10457,42 @@ def to_pinmem(tensor, _to=to):
1045210457 self ._sync_all ()
1045310458 return result
1045410459
10455- def _to_consolidated (self , * , device , pin_memory , num_threads , non_blocking ):
10460+ def _to_consolidated (self , * , device , pin_memory , num_threads , non_blocking , compilable ):
1045610461 if num_threads is None :
1045710462 # unspecified num_threads should mean 0
1045810463 num_threads = 0
10464+
1045910465 storage = self ._consolidated ["storage" ]
10460- if pin_memory :
10461- storage = storage .pin_memory ()
10462- storage_cast = storage .to (device , non_blocking = True )
10466+
10467+ @torch .compiler .disable ()
10468+ def to (storage ):
10469+ if pin_memory :
10470+ storage = storage .pin_memory ()
10471+ storage_cast = storage .to (device , non_blocking = True )
10472+ return storage_cast
10473+ storage_cast = to (storage )
10474+
10475+ if compilable :
10476+ result = self ._to_consolidated_compile (device = device , num_threads = num_threads , storage_cast = storage_cast )
10477+ else :
10478+ result = self ._to_consolidated_eager (device = device , num_threads = num_threads , storage_cast = storage_cast )
10479+
10480+ if non_blocking in (False , None ):
10481+ if device .type == "cuda" and non_blocking is False :
10482+ # sending to CUDA force sync
10483+ cuda_device = device
10484+ elif storage .device .type == "cuda" :
10485+ # sending from cuda: need sync unless intentionally not asked for
10486+ cuda_device = storage .device .type
10487+ else :
10488+ cuda_device = None
10489+ if cuda_device is not None :
10490+ torch .cuda .current_stream (cuda_device ).synchronize ()
10491+
10492+ return result
10493+
10494+ def _to_consolidated_eager (self , * , device , num_threads , storage_cast ):
10495+
1046310496 untyped_storage = storage_cast .untyped_storage ()
1046410497
1046510498 def set_ (x ):
@@ -10528,20 +10561,109 @@ def copy_dict(d):
1052810561 }
1052910562
1053010563 result ._consolidated ["metadata" ] = copy_dict (self ._consolidated ["metadata" ])
10531- if non_blocking in (False , None ):
10532- if device .type == "cuda" and non_blocking is False :
10533- # sending to CUDA force sync
10534- cuda_device = device
10535- elif storage .device .type == "cuda" :
10536- # sending from cuda: need sync unless intentionally not asked for
10537- cuda_device = storage .device .type
10538- else :
10539- cuda_device = None
10540- if cuda_device is not None :
10541- torch .cuda .current_stream (cuda_device ).synchronize ()
10542-
1054310564 return result
1054410565
10566+ @torch .compile (dynamic = True )
10567+ def _to_consolidated_compile (self , * , device , num_threads , storage_cast ):
10568+
10569+ def get_l (metadata , lengths = None , pos = None , keys = None , prefix = ()):
10570+ root = False
10571+ if lengths is None :
10572+ lengths = []
10573+ pos = []
10574+ keys = []
10575+ root = True
10576+ for k , v in metadata ["leaves" ].items ():
10577+ lengths .append (v [- 2 ])
10578+ pos .append (v [- 1 ])
10579+ keys .append (prefix + (k ,))
10580+ for k , d in metadata .items ():
10581+ if "leaves" in d :
10582+ get_l (d , lengths = lengths , pos = pos , keys = keys , prefix = prefix + (k ,))
10583+ if root :
10584+ # l = torch.empty(len(lengths), dtype=torch.long)
10585+ # l[torch.as_tensor(pos)] = torch.as_tensor(lengths)
10586+ out0 = [None , ] * len (pos )
10587+ out1 = [None , ] * len (pos )
10588+ for p , l , k in zip (pos , lengths , keys ):
10589+ out0 [p ] = k
10590+ out1 [p ] = l
10591+ return out0 , out1
10592+
10593+ def split_storage (consolidated ):
10594+ keys , splits = get_l (consolidated ["metadata" ])
10595+ return dict (zip (keys , consolidated ["storage" ].split (splits )))
10596+
10597+ if num_threads is None :
10598+ # unspecified num_threads should mean 0
10599+ num_threads = 0
10600+
10601+ _consolidated = {"storage" : storage_cast }
10602+ if "metadata" in self ._consolidated :
10603+ # faster than deepcopy
10604+ def copy_dict (d ):
10605+ return {
10606+ k : v if not isinstance (v , dict ) else copy_dict (v )
10607+ for k , v in d .items ()
10608+ }
10609+
10610+ _consolidated ["metadata" ] = copy_dict (self ._consolidated ["metadata" ])
10611+
10612+ slice_map = split_storage (_consolidated )
10613+
10614+ def set_ (name , x ):
10615+ if not isinstance (name , tuple ):
10616+ name = (name ,)
10617+ if x .is_nested :
10618+ from torch ._subclasses .fake_tensor import FakeTensor
10619+ from torch ._subclasses .functional_tensor import FunctionalTensor
10620+ from torch .nested ._internal .nested_tensor import (
10621+ _tensor_symint_registry ,
10622+ NestedTensor ,
10623+ )
10624+ from torch .nested ._internal .ops import extract_kwargs
10625+
10626+ if x .layout != torch .jagged :
10627+ raise RuntimeError (
10628+ "to(device) with nested tensors that do not have a jagged layout is not implemented yet. "
10629+ "Please raise an issue on GitHub."
10630+ )
10631+ kwargs = extract_kwargs (x )
10632+ values = x ._values
10633+ lengths = x ._lengths
10634+ offsets = x ._offsets
10635+ kwargs ["offsets" ] = slice_map [(* name [:- 1 ], "<NJT_OFFSETS>" + name [- 1 ],)].view (offsets .dtype ).view (offsets .shape )
10636+ if lengths is not None :
10637+ kwargs ["lengths" ] = slice_map [(* name [:- 1 ], "<NJT_LENGTHS>" + name [- 1 ],)].view (lengths .dtype ).view (lengths .shape )
10638+ ragged_source = lengths
10639+ else :
10640+ ragged_source = offsets
10641+ new_thing = kwargs .get ("lengths" , kwargs .get ("offsets" ))
10642+ if isinstance (new_thing , (FakeTensor , FunctionalTensor )):
10643+ from torch ._subclasses .functional_tensor import (
10644+ mb_unwrap_functional_tensor ,
10645+ )
10646+
10647+ # Temporary hack until we have the union find
10648+ tgt = mb_unwrap_functional_tensor (new_thing )
10649+ src = mb_unwrap_functional_tensor (ragged_source )
10650+ tgt .nested_int_memo = src .nested_int_memo
10651+ else :
10652+ _tensor_symint_registry [new_thing ] = _tensor_symint_registry [
10653+ ragged_source
10654+ ]
10655+
10656+ return NestedTensor (
10657+ slice_map [(* name [:- 1 ], "<NJT_VALUES>" + name [- 1 ],)].view (values .dtype ).view (values .shape ),
10658+ ** kwargs ,
10659+ )
10660+ return slice_map [name ].view (x .dtype ).view (x .shape )
10661+
10662+ result = self ._fast_apply (
10663+ set_ , device = torch .device (device ), num_threads = num_threads , named = True , nested_keys = True ,
10664+ )
10665+ result ._consolidated = _consolidated
10666+ return result
1054510667 def _sync_all (self ):
1054610668 if _has_cuda :
1054710669 # TODO: dynamo doesn't like torch.cuda.is_initialized
0 commit comments