@@ -3521,9 +3521,10 @@ def _reduce_vals_and_metadata(self, *, dtype=NO_DEFAULT, requires_metadata):
35213521
35223522 flat_size = []
35233523 start = 0
3524+ sorting_index = 0
35243525
35253526 def add_single_value (value , key , metadata_dict , dtype , shape , flat_size ):
3526- nonlocal start
3527+ nonlocal start , sorting_index
35273528 n = value .element_size () * value .numel ()
35283529 if need_padding :
35293530 pad = n % 8
@@ -3541,7 +3542,10 @@ def add_single_value(value, key, metadata_dict, dtype, shape, flat_size):
35413542 start ,
35423543 stop ,
35433544 pad ,
3545+ flat_size [- 1 ],
3546+ sorting_index ,
35443547 )
3548+ sorting_index = sorting_index + 1
35453549 start = stop
35463550
35473551 def assign (
@@ -10441,6 +10445,7 @@ def to(self, *args, **kwargs) -> T:
1044110445 pin_memory = non_blocking_pin ,
1044210446 num_threads = num_threads ,
1044310447 non_blocking = non_blocking ,
10448+ compilable = is_dynamo_compiling (),
1044410449 )
1044510450
1044610451 if non_blocking is None :
@@ -10498,14 +10503,49 @@ def to_pinmem(tensor, _to=to):
1049810503 self ._sync_all ()
1049910504 return result
1050010505
10501- def _to_consolidated (self , * , device , pin_memory , num_threads , non_blocking ):
10506+ def _to_consolidated (
10507+ self , * , device , pin_memory , num_threads , non_blocking , compilable
10508+ ):
1050210509 if num_threads is None :
1050310510 # unspecified num_threads should mean 0
1050410511 num_threads = 0
10512+
1050510513 storage = self ._consolidated ["storage" ]
10506- if pin_memory :
10507- storage = storage .pin_memory ()
10508- storage_cast = storage .to (device , non_blocking = True )
10514+
10515+ @torch .compiler .disable ()
10516+ def to (storage ):
10517+ if pin_memory :
10518+ storage = storage .pin_memory ()
10519+ storage_cast = storage .to (device , non_blocking = True )
10520+ return storage_cast
10521+
10522+ storage_cast = to (storage )
10523+
10524+ if compilable :
10525+ result = self ._to_consolidated_compile (
10526+ device = device , num_threads = num_threads , storage_cast = storage_cast
10527+ )
10528+ else :
10529+ result = self ._to_consolidated_eager (
10530+ device = device , num_threads = num_threads , storage_cast = storage_cast
10531+ )
10532+
10533+ if non_blocking in (False , None ):
10534+ if device .type == "cuda" and non_blocking is False :
10535+ # sending to CUDA force sync
10536+ cuda_device = device
10537+ elif storage .device .type == "cuda" :
10538+ # sending from cuda: need sync unless intentionally not asked for
10539+ cuda_device = storage .device .type
10540+ else :
10541+ cuda_device = None
10542+ if cuda_device is not None :
10543+ torch .cuda .current_stream (cuda_device ).synchronize ()
10544+
10545+ return result
10546+
10547+ def _to_consolidated_eager (self , * , device , num_threads , storage_cast ):
10548+
1050910549 untyped_storage = storage_cast .untyped_storage ()
1051010550
1051110551 def set_ (x ):
@@ -10574,18 +10614,138 @@ def copy_dict(d):
1057410614 }
1057510615
1057610616 result ._consolidated ["metadata" ] = copy_dict (self ._consolidated ["metadata" ])
10577- if non_blocking in (False , None ):
10578- if device .type == "cuda" and non_blocking is False :
10579- # sending to CUDA force sync
10580- cuda_device = device
10581- elif storage .device .type == "cuda" :
10582- # sending from cuda: need sync unless intentionally not asked for
10583- cuda_device = storage .device .type
10584- else :
10585- cuda_device = None
10586- if cuda_device is not None :
10587- torch .cuda .current_stream (cuda_device ).synchronize ()
10617+ return result
10618+
10619+ def _to_consolidated_compile (self , * , device , num_threads , storage_cast ):
10620+
10621+ def get_tensors_length (metadata , lengths = None , pos = None , keys = None , prefix = ()):
10622+ root = False
10623+ if lengths is None :
10624+ lengths = []
10625+ pos = []
10626+ keys = []
10627+ root = True
10628+ for k , v in metadata ["leaves" ].items ():
10629+ lengths .append (v [- 2 ])
10630+ pos .append (v [- 1 ])
10631+ keys .append (prefix + (k ,))
10632+ for k , d in metadata .items ():
10633+ if "leaves" in d :
10634+ get_tensors_length (
10635+ d , lengths = lengths , pos = pos , keys = keys , prefix = prefix + (k ,)
10636+ )
10637+ if root :
10638+ # l = torch.empty(len(lengths), dtype=torch.long)
10639+ # l[torch.as_tensor(pos)] = torch.as_tensor(lengths)
10640+ out0 = [
10641+ None ,
10642+ ] * len (pos )
10643+ out1 = [
10644+ None ,
10645+ ] * len (pos )
10646+ for p , l , k in zip (pos , lengths , keys ):
10647+ out0 [p ] = k
10648+ out1 [p ] = l
10649+ return out0 , out1
10650+
10651+ def split_storage (consolidated ):
10652+ keys , splits = get_tensors_length (consolidated ["metadata" ])
10653+ return dict (zip (keys , consolidated ["storage" ].split (splits )))
10654+
10655+ if num_threads is None :
10656+ # unspecified num_threads should mean 0
10657+ num_threads = 0
10658+
10659+ _consolidated = {"storage" : storage_cast }
10660+ if "metadata" in self ._consolidated :
10661+ # faster than deepcopy
10662+ def copy_dict (d ):
10663+ return {
10664+ k : v if not isinstance (v , dict ) else copy_dict (v )
10665+ for k , v in d .items ()
10666+ }
10667+
10668+ _consolidated ["metadata" ] = copy_dict (self ._consolidated ["metadata" ])
10669+
10670+ slice_map = split_storage (_consolidated )
10671+
10672+ def view_as (src , dest ):
10673+ return src .view (dest .dtype )[: dest .numel ()].view (dest .shape )
1058810674
10675+ def set_ (name , x ):
10676+ if not isinstance (name , tuple ):
10677+ name = (name ,)
10678+ if x .is_nested :
10679+ from torch ._subclasses .fake_tensor import FakeTensor
10680+ from torch ._subclasses .functional_tensor import FunctionalTensor
10681+ from torch .nested ._internal .nested_tensor import (
10682+ _tensor_symint_registry ,
10683+ NestedTensor ,
10684+ )
10685+ from torch .nested ._internal .ops import extract_kwargs
10686+
10687+ if x .layout != torch .jagged :
10688+ raise RuntimeError (
10689+ "to(device) with nested tensors that do not have a jagged layout is not implemented yet. "
10690+ "Please raise an issue on GitHub."
10691+ )
10692+ kwargs = extract_kwargs (x )
10693+ values = x ._values
10694+ lengths = x ._lengths
10695+ offsets = x ._offsets
10696+ storage_offsets = slice_map [
10697+ (
10698+ * name [:- 1 ],
10699+ "<NJT_OFFSETS>" + name [- 1 ],
10700+ )
10701+ ]
10702+ kwargs ["offsets" ] = view_as (storage_offsets , offsets )
10703+ if lengths is not None :
10704+ storage_lengths = slice_map [
10705+ (
10706+ * name [:- 1 ],
10707+ "<NJT_LENGTHS>" + name [- 1 ],
10708+ )
10709+ ]
10710+ kwargs ["lengths" ] = view_as (storage_lengths , lengths )
10711+ ragged_source = lengths
10712+ else :
10713+ ragged_source = offsets
10714+ new_thing = kwargs .get ("lengths" , kwargs .get ("offsets" ))
10715+ if isinstance (new_thing , (FakeTensor , FunctionalTensor )):
10716+ from torch ._subclasses .functional_tensor import (
10717+ mb_unwrap_functional_tensor ,
10718+ )
10719+
10720+ # Temporary hack until we have the union find
10721+ tgt = mb_unwrap_functional_tensor (new_thing )
10722+ src = mb_unwrap_functional_tensor (ragged_source )
10723+ tgt .nested_int_memo = src .nested_int_memo
10724+ else :
10725+ _tensor_symint_registry [new_thing ] = _tensor_symint_registry [
10726+ ragged_source
10727+ ]
10728+
10729+ storage_values = slice_map [
10730+ (
10731+ * name [:- 1 ],
10732+ "<NJT_VALUES>" + name [- 1 ],
10733+ )
10734+ ]
10735+ return NestedTensor (
10736+ view_as (storage_values , values ),
10737+ ** kwargs ,
10738+ )
10739+ return view_as (slice_map [name ], x )
10740+
10741+ result = self ._fast_apply (
10742+ set_ ,
10743+ device = torch .device (device ),
10744+ num_threads = num_threads ,
10745+ named = True ,
10746+ nested_keys = True ,
10747+ )
10748+ result ._consolidated = _consolidated
1058910749 return result
1059010750
1059110751 def _sync_all (self ):
0 commit comments