-
Notifications
You must be signed in to change notification settings - Fork 56
Open
Description
Describe the bug:
When attempting to compile Google's Gemma3n model using QEfficient for Qualcomm Cloud AI deployment, I encounter Transformers Version Conflict issue:
- Gemma3n requires transformers >=4.53.0 (source)
- QEfficient currently only supports transformers==4.51.3 (as per
pyproject.toml
)
Steps to Reproduce:
- Install QEfficient
- Attempt to load Gemma3n model (requires transformers>=4.53.0)
- Run compilation:
from QEfficient import QEFFAutoModelForImageTextToText
model_name = "google/gemma-3n-E2B-it"
model = QEFFAutoModelForImageTextToText.from_pretrained(model_name)
model.compile(prefill_seq_len=1024, ctx_len=16384, num_cores=16, num_devices=1, compile_dir ="./qpc_gemma-3n-E2B-it")
Error Logs
Traceback (most recent call last):
File "/home/user/gemma3n/qefficient/qeff_env/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py", line 1131, in from_pretrained
config_class = CONFIG_MAPPING[config_dict["model_type"]]
File "/home/user/gemma3n/qefficient/qeff_env/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py", line 833, in __getitem__
raise KeyError(key)
KeyError: 'gemma3n'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/user/gemma3n/qefficient/compile-qeff.py", line 4, in <module>
model = QEFFAutoModelForImageTextToText.from_pretrained(model_name)
File "/home/user/gemma3n/qefficient/qeff_env/lib/python3.10/site-packages/QEfficient/transformers/quantizers/auto.py", line 64, in wrapper
out = func(*args, **kwargs)
File "/home/user/gemma3n/qefficient/qeff_env/lib/python3.10/site-packages/QEfficient/transformers/models/modeling_auto.py", line 1336, in from_pretrained
model = cls._hf_auto_class.from_pretrained(pretrained_model_name_or_path, **kwargs)
File "/home/user/gemma3n/qefficient/qeff_env/lib/python3.10/site-packages/transformers/models/auto/auto_factory.py", line 531, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
File "/home/user/gemma3n/qefficient/qeff_env/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py", line 1133, in from_pretrained
raise ValueError(
ValueError: The checkpoint you are trying to load has model type `gemma3n` but Transformers does not recognize this architecture. This could be because of an issue with the checkpoint, or because your version of Transformers is out of date.
You can update Transformers with the command `pip install --upgrade transformers`. If this does not work, and the checkpoint is very new, then there may not be a release version that supports this model yet. In this case, you can get the most up-to-date code by installing Transformers from source with the command `pip install git+https://github.com/huggingface/transformers.git`
- I try upgrade transformers using command
pip install --upgrade transformers
and recompile but come into this error:
/home/user/gemma3n/qefficient/qeff_env/lib/python3.10/site-packages/onnxscript/converter.py:816: FutureWarning: 'onnxscript.values.Op.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead.
param_schemas = callee.param_schemas()
Loading checkpoint shards: 100%|██████████████████████████████████████| 3/3 [00:03<00:00, 1.00s/it]
[Warning]: No transforms applied to model: Gemma3nForConditionalGeneration. It may be an unsupported model!
Traceback (most recent call last):
File "/home/user/gemma3n/qefficient/compile-qeff.py", line 5, in <module>
model.compile(prefill_seq_len=1024, ctx_len=16384, num_cores=16, num_devices=1, compile_dir ="./qpc_gemma-3n-E2B-it")
File "/home/user/gemma3n/qefficient/qeff_env/lib/python3.10/site-packages/QEfficient/transformers/models/modeling_auto.py", line 1021, in compile
output_names = self.model.get_output_names()
File "/home/user/gemma3n/qefficient/qeff_env/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1940, in __getattr__
raise AttributeError(
AttributeError: 'Gemma3nForConditionalGeneration' object has no attribute 'get_output_names'
Expected behavior
Command completes execution and model is compiled to .bin
file
Environment:
- OS: Ubuntu 22.04.5 LTS (GNU/Linux 6.8.0-1030-azure x86_64)
- Branch: main
Metadata
Metadata
Assignees
Labels
No labels