|
| 1 | +#!/usr/bin/env python3 |
| 2 | +""" |
| 3 | +cuslide2 Plugin Demo with nvImageCodec GPU Acceleration |
| 4 | +
|
| 5 | +This example demonstrates how to use the cuslide2 plugin for GPU-accelerated |
| 6 | +JPEG/JPEG2000 decoding in digital pathology images. |
| 7 | +
|
| 8 | +Features: |
| 9 | +- Automatic cuslide2 plugin configuration |
| 10 | +- GPU vs CPU performance comparison |
| 11 | +- Support for SVS, TIFF, and Philips formats |
| 12 | +- nvImageCodec integration validation |
| 13 | +""" |
| 14 | + |
| 15 | +import os |
| 16 | +import sys |
| 17 | +import json |
| 18 | +import time |
| 19 | +import numpy as np |
| 20 | +from pathlib import Path |
| 21 | +from typing import Optional, Tuple, List |
| 22 | + |
| 23 | +def setup_cuslide2_plugin(): |
| 24 | + """Configure cuCIM to use cuslide2 plugin with priority""" |
| 25 | + |
| 26 | + print("🔧 Setting up cuslide2 plugin...") |
| 27 | + |
| 28 | + # Set plugin root to build directory |
| 29 | + plugin_root = "/home/cdinea/cucim/cpp/plugins/cucim.kit.cuslide2/build/lib" |
| 30 | + |
| 31 | + try: |
| 32 | + from cucim.clara import _set_plugin_root |
| 33 | + _set_plugin_root(plugin_root) |
| 34 | + print(f"✅ Plugin root set: {plugin_root}") |
| 35 | + except ImportError: |
| 36 | + print("❌ cuCIM not available - please install cuCIM") |
| 37 | + return False |
| 38 | + |
| 39 | + # Create plugin configuration to prioritize cuslide2 |
| 40 | + config = { |
| 41 | + "plugin": { |
| 42 | + "names": [ |
| 43 | + "cucim.kit.cuslide2@25.10.00.so", # cuslide2 with nvImageCodec (highest priority) |
| 44 | + "cucim.kit.cuslide@25.10.00.so", # Original cuslide (fallback) |
| 45 | + "cucim.kit.cumed@25.10.00.so" # Medical imaging |
| 46 | + ] |
| 47 | + } |
| 48 | + } |
| 49 | + |
| 50 | + # Write config file |
| 51 | + config_path = "/tmp/.cucim_cuslide2_demo.json" |
| 52 | + with open(config_path, "w") as f: |
| 53 | + json.dump(config, f, indent=2) |
| 54 | + |
| 55 | + # Set environment variable |
| 56 | + os.environ["CUCIM_CONFIG_PATH"] = config_path |
| 57 | + print(f"✅ Plugin configuration created: {config_path}") |
| 58 | + |
| 59 | + return True |
| 60 | + |
| 61 | +def check_nvimgcodec_availability() -> bool: |
| 62 | + """Check if nvImageCodec is available for GPU acceleration""" |
| 63 | + |
| 64 | + conda_prefix = os.environ.get('CONDA_PREFIX', '/home/cdinea/micromamba') |
| 65 | + nvimgcodec_lib = Path(conda_prefix) / "lib/libnvimgcodec.so.0" |
| 66 | + |
| 67 | + if nvimgcodec_lib.exists(): |
| 68 | + print(f"✅ nvImageCodec available: {nvimgcodec_lib}") |
| 69 | + return True |
| 70 | + else: |
| 71 | + print(f"⚠️ nvImageCodec not found: {nvimgcodec_lib}") |
| 72 | + print(" GPU acceleration will not be available") |
| 73 | + return False |
| 74 | + |
| 75 | +def benchmark_decode_performance(img, region_sizes: List[int] = [1024, 2048, 4096]) -> dict: |
| 76 | + """Benchmark CPU vs GPU decode performance""" |
| 77 | + |
| 78 | + results = {} |
| 79 | + |
| 80 | + print(f"\n📊 Performance Benchmarking") |
| 81 | + print("=" * 50) |
| 82 | + |
| 83 | + for size in region_sizes: |
| 84 | + if img.shape[0] < size or img.shape[1] < size: |
| 85 | + print(f"⚠️ Skipping {size}x{size} - image too small") |
| 86 | + continue |
| 87 | + |
| 88 | + print(f"\n🔍 Testing {size}x{size} region...") |
| 89 | + |
| 90 | + # CPU benchmark |
| 91 | + print(" 🖥️ CPU decode...") |
| 92 | + try: |
| 93 | + start_time = time.time() |
| 94 | + cpu_region = img.read_region( |
| 95 | + location=[0, 0], |
| 96 | + size=[size, size], |
| 97 | + level=0, |
| 98 | + device="cpu" |
| 99 | + ) |
| 100 | + cpu_time = time.time() - start_time |
| 101 | + print(f" Time: {cpu_time:.3f}s") |
| 102 | + print(f" Shape: {cpu_region.shape}") |
| 103 | + print(f" Device: {cpu_region.device}") |
| 104 | + except Exception as e: |
| 105 | + print(f" ❌ CPU decode failed: {e}") |
| 106 | + cpu_time = None |
| 107 | + |
| 108 | + # GPU benchmark |
| 109 | + print(" 🚀 GPU decode...") |
| 110 | + try: |
| 111 | + start_time = time.time() |
| 112 | + gpu_region = img.read_region( |
| 113 | + location=[0, 0], |
| 114 | + size=[size, size], |
| 115 | + level=0, |
| 116 | + device="cuda" |
| 117 | + ) |
| 118 | + gpu_time = time.time() - start_time |
| 119 | + print(f" Time: {gpu_time:.3f}s") |
| 120 | + print(f" Shape: {gpu_region.shape}") |
| 121 | + print(f" Device: {gpu_region.device}") |
| 122 | + |
| 123 | + if cpu_time and gpu_time > 0: |
| 124 | + speedup = cpu_time / gpu_time |
| 125 | + print(f" 🎯 Speedup: {speedup:.2f}x") |
| 126 | + results[size] = { |
| 127 | + 'cpu_time': cpu_time, |
| 128 | + 'gpu_time': gpu_time, |
| 129 | + 'speedup': speedup |
| 130 | + } |
| 131 | + |
| 132 | + except Exception as e: |
| 133 | + print(f" ⚠️ GPU decode failed: {e}") |
| 134 | + print(f" (This is expected if CUDA is not available)") |
| 135 | + |
| 136 | + return results |
| 137 | + |
| 138 | +def analyze_image_format(img) -> dict: |
| 139 | + """Analyze image format and compression details""" |
| 140 | + |
| 141 | + info = { |
| 142 | + 'dimensions': img.shape, |
| 143 | + 'levels': img.level_count, |
| 144 | + 'spacing': img.spacing() if hasattr(img, 'spacing') else None, |
| 145 | + 'dtype': str(img.dtype), |
| 146 | + 'device': str(img.device), |
| 147 | + 'associated_images': [] |
| 148 | + } |
| 149 | + |
| 150 | + # Get associated images |
| 151 | + if hasattr(img, 'associated_images'): |
| 152 | + info['associated_images'] = list(img.associated_images) |
| 153 | + |
| 154 | + # Get metadata |
| 155 | + if hasattr(img, 'metadata'): |
| 156 | + metadata = img.metadata |
| 157 | + if isinstance(metadata, dict): |
| 158 | + # Look for compression information |
| 159 | + if 'tiff' in metadata: |
| 160 | + tiff_info = metadata['tiff'] |
| 161 | + if isinstance(tiff_info, dict) and 'compression' in tiff_info: |
| 162 | + info['compression'] = tiff_info['compression'] |
| 163 | + |
| 164 | + return info |
| 165 | + |
| 166 | +def test_cuslide2_plugin(file_path: str): |
| 167 | + """Test cuslide2 plugin with a specific file""" |
| 168 | + |
| 169 | + print(f"\n🔍 Testing cuslide2 plugin with: {file_path}") |
| 170 | + print("=" * 60) |
| 171 | + |
| 172 | + if not Path(file_path).exists(): |
| 173 | + print(f"❌ File not found: {file_path}") |
| 174 | + return False |
| 175 | + |
| 176 | + try: |
| 177 | + from cucim import CuImage |
| 178 | + |
| 179 | + # Load image |
| 180 | + print("📁 Loading image...") |
| 181 | + start_time = time.time() |
| 182 | + img = CuImage(file_path) |
| 183 | + load_time = time.time() - start_time |
| 184 | + |
| 185 | + print(f"✅ Image loaded in {load_time:.3f}s") |
| 186 | + |
| 187 | + # Analyze image format |
| 188 | + print("\n📋 Image Analysis:") |
| 189 | + info = analyze_image_format(img) |
| 190 | + for key, value in info.items(): |
| 191 | + print(f" {key}: {value}") |
| 192 | + |
| 193 | + # Show level information |
| 194 | + print(f"\n📊 Level Information:") |
| 195 | + for level in range(img.level_count): |
| 196 | + level_shape = img.level_shape(level) |
| 197 | + level_spacing = img.level_spacing(level) if hasattr(img, 'level_spacing') else None |
| 198 | + print(f" Level {level}: {level_shape} (spacing: {level_spacing})") |
| 199 | + |
| 200 | + # Performance benchmarking |
| 201 | + results = benchmark_decode_performance(img) |
| 202 | + |
| 203 | + # Summary |
| 204 | + if results: |
| 205 | + print(f"\n🏆 Performance Summary:") |
| 206 | + avg_speedup = sum(r['speedup'] for r in results.values()) / len(results) |
| 207 | + print(f" Average GPU speedup: {avg_speedup:.2f}x") |
| 208 | + |
| 209 | + best_speedup = max(r['speedup'] for r in results.values()) |
| 210 | + best_size = max(results.keys(), key=lambda k: results[k]['speedup']) |
| 211 | + print(f" Best speedup: {best_speedup:.2f}x (at {best_size}x{best_size})") |
| 212 | + |
| 213 | + return True |
| 214 | + |
| 215 | + except Exception as e: |
| 216 | + print(f"❌ Error testing plugin: {e}") |
| 217 | + import traceback |
| 218 | + traceback.print_exc() |
| 219 | + return False |
| 220 | + |
| 221 | +def find_test_images() -> List[str]: |
| 222 | + """Find available test images""" |
| 223 | + |
| 224 | + search_paths = [ |
| 225 | + "/home/cdinea/cucim/test_data", |
| 226 | + "/home/cdinea/cucim/notebooks/input", |
| 227 | + "/home/cdinea/cucim/cpp/plugins/cucim.kit.cuslide2/test_data", |
| 228 | + "/tmp" |
| 229 | + ] |
| 230 | + |
| 231 | + extensions = ['.svs', '.tiff', '.tif', '.ndpi'] |
| 232 | + found_images = [] |
| 233 | + |
| 234 | + for search_path in search_paths: |
| 235 | + if Path(search_path).exists(): |
| 236 | + for ext in extensions: |
| 237 | + pattern = f"*{ext}" |
| 238 | + matches = list(Path(search_path).glob(pattern)) |
| 239 | + found_images.extend([str(m) for m in matches]) |
| 240 | + |
| 241 | + return found_images |
| 242 | + |
| 243 | +def demo_mode(): |
| 244 | + """Run demo mode without specific files""" |
| 245 | + |
| 246 | + print("\n🎮 cuslide2 Plugin Demo Mode") |
| 247 | + print("=" * 40) |
| 248 | + |
| 249 | + # Check for available test images |
| 250 | + test_images = find_test_images() |
| 251 | + |
| 252 | + if test_images: |
| 253 | + print(f"📁 Found {len(test_images)} test image(s):") |
| 254 | + for img_path in test_images[:5]: # Show first 5 |
| 255 | + print(f" • {img_path}") |
| 256 | + |
| 257 | + # Test with first available image |
| 258 | + print(f"\n🧪 Testing with: {test_images[0]}") |
| 259 | + return test_cuslide2_plugin(test_images[0]) |
| 260 | + else: |
| 261 | + print("📝 No test images found. To test cuslide2:") |
| 262 | + print(" 1. Place a .svs, .tiff, or .tif file in one of these locations:") |
| 263 | + print(" • /home/cdinea/cucim/test_data/") |
| 264 | + print(" • /home/cdinea/cucim/notebooks/input/") |
| 265 | + print(" • /tmp/") |
| 266 | + print(" 2. Run: python cuslide2_plugin_demo.py /path/to/your/image.svs") |
| 267 | + |
| 268 | + print(f"\n✅ cuslide2 plugin is configured and ready!") |
| 269 | + print(f"🎯 Supported formats:") |
| 270 | + print(f" • Aperio SVS (JPEG/JPEG2000)") |
| 271 | + print(f" • Philips TIFF (JPEG/JPEG2000)") |
| 272 | + print(f" • Generic tiled TIFF (JPEG/JPEG2000)") |
| 273 | + |
| 274 | + return True |
| 275 | + |
| 276 | +def main(): |
| 277 | + """Main function""" |
| 278 | + |
| 279 | + print("🚀 cuslide2 Plugin Demo with nvImageCodec") |
| 280 | + print("=" * 50) |
| 281 | + |
| 282 | + # Setup plugin |
| 283 | + if not setup_cuslide2_plugin(): |
| 284 | + return 1 |
| 285 | + |
| 286 | + # Check nvImageCodec |
| 287 | + nvimgcodec_available = check_nvimgcodec_availability() |
| 288 | + |
| 289 | + # Get file path from command line or run demo |
| 290 | + if len(sys.argv) > 1: |
| 291 | + file_path = sys.argv[1] |
| 292 | + success = test_cuslide2_plugin(file_path) |
| 293 | + else: |
| 294 | + success = demo_mode() |
| 295 | + |
| 296 | + # Final summary |
| 297 | + print(f"\n🎉 Demo completed!") |
| 298 | + print(f"✅ cuslide2 plugin: Ready") |
| 299 | + print(f"{'✅' if nvimgcodec_available else '⚠️ '} nvImageCodec: {'Available' if nvimgcodec_available else 'CPU fallback'}") |
| 300 | + |
| 301 | + if nvimgcodec_available: |
| 302 | + print(f"\n🚀 GPU acceleration is active!") |
| 303 | + print(f" JPEG/JPEG2000 tiles will be decoded on GPU for faster performance") |
| 304 | + else: |
| 305 | + print(f"\n💡 To enable GPU acceleration:") |
| 306 | + print(f" micromamba install libnvimgcodec-dev libnvimgcodec0 -c conda-forge") |
| 307 | + |
| 308 | + return 0 if success else 1 |
| 309 | + |
| 310 | +if __name__ == "__main__": |
| 311 | + sys.exit(main()) |
0 commit comments