You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: content/develop/ai/notebook-collection.md
+9-1Lines changed: 9 additions & 1 deletion
Display the source diff
Display the rich diff
Original file line number
Diff line number
Diff line change
@@ -20,18 +20,26 @@ weight: 40
20
20
| Implementing hybrid search with Redis | Hybrid and Vector Search | Combines vector similarity with keyword filters. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/02_hybrid_search.ipynb)|
21
21
| Vector search with Redis Python client | Hybrid and Vector Search | Demonstrates pure vector search using the Redis Python client. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/00_redispy.ipynb)|
22
22
| Vector search with Redis Vector Library | Hybrid and Vector Search | Uses RedisVL for advanced vector indexing and querying. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/01_redisvl.ipynb)|
23
+
| Shows how to convert a float32 index to float16 or integer data types | Hybrid and Vector Search | Demonstrates data type optimization for vector indices. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/03_dtype_support.ipynb)|
23
24
| RAG from scratch with Redis Vector Library | RAG | Basic RAG implementation using RedisVL. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/01_redisvl.ipynb)|
24
25
| RAG using Redis and LangChain | RAG | Shows integration between Redis and LangChain for RAG. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/02_langchain.ipynb)|
25
26
| RAG using Redis and LlamaIndex | RAG | Walkthrough of RAG with Redis and LlamaIndex. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/03_llamaindex.ipynb)|
26
27
| Advanced RAG with RedisVL | RAG | Advanced concepts and techniques using RedisVL. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)|
27
28
| RAG using Redis and Nvidia | RAG | NVIDIA + Redis for LLM context retrieval. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb)|
28
29
| Utilize RAGAS framework to evaluate RAG performance | RAG | Evaluation of RAG apps using the RAGAS framework. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/06_ragas_evaluation.ipynb)|
30
+
| Implement a simple RBAC policy with vector search using Redis | RAG | Role-based access control implementation for RAG systems. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/07_user_role_based_rag.ipynb)|
29
31
| LangGraph and agents | Agents | Getting started with agent workflows. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb)|
30
32
| Movie recommendation system | Agents | Collaborative agent-based movie recommender. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/01_crewai_langgraph_redis.ipynb)|
33
+
| Full-Featured Agent Architecture | Agents | Comprehensive agent implementation with advanced features. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/02_full_featured_agent.ipynb)|
34
+
| Optimize semantic cache threshold with RedisVL | Semantic Cache | Performance optimization for semantic caching systems. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/02_semantic_cache_optimization.ipynb)|
35
+
| Simple examples of how to build an allow/block list router in addition to a multi-topic router | Semantic Router | Basic routing patterns and access control mechanisms. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/00_semantic_routing.ipynb)|
36
+
| Use `RouterThresholdOptimizer` from RedisVL to setup best router config | Semantic Router | Router configuration optimization using RedisVL. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-router/01_routing_optimization.ipynb)|
31
37
| Facial recognition | Computer Vision | Face matching using Facenet and RedisVL. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/computer-vision/00_facial_recognition_facenet.ipynb)|
32
38
| Content filtering with RedisVL | Recommendation Systems | Introduction to content-based filtering. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/00_content_filtering.ipynb)|
33
39
| Collaborative filtering with RedisVL | Recommendation Systems | Intro to collaborative filtering with RedisVL. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)|
34
-
| Advanced RAG example | Best Practices | Demonstrates mature RAG implementation patterns. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)|
40
+
| Intro deep learning two tower example with RedisVL | Recommendation Systems | Deep learning approach to recommendation systems. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/02_two_towers.ipynb)|
41
+
| Credit scoring system using Feast with Redis as the online store | Feature Store | Feature store implementation for ML model serving. |[Open in Colab](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/feature-store/00_feast_credit_score.ipynb)|
0 commit comments