|
46 | 46 |
|
47 | 47 | %% dimension reduction with LDA, HLDA, MMDA, WHMMDA, PLS-DA, and SDA
|
48 | 48 |
|
49 |
| -disp('LDA method') |
| 49 | +disp('1- LDA method') |
50 | 50 | [para_lda, Z_lda] = lda_sldr(train_data, train_label, dim); % Linear discriminant analysis (LDA)
|
51 | 51 |
|
52 |
| -disp('HLDA method') |
| 52 | +disp('2- HLDA method') |
53 | 53 | [para_hlda, Z_hlda] = hlda_sldr(train_data, train_label, dim); % Heteroscedastic extension of LDA
|
54 | 54 |
|
55 | 55 | try
|
56 |
| - disp('MMDA method') |
| 56 | + disp('3- MMDA method') |
57 | 57 | [para_mmda, Z_mmda] = mmda_sldr(train_data, train_label, dim); % Max-min distance analysis (MMDA)
|
58 | 58 | catch
|
59 | 59 | warning('please add cvx for MMDA')
|
|
63 | 63 | end
|
64 | 64 |
|
65 | 65 | try
|
66 |
| - disp('WHMMDA method') |
| 66 | + disp('4- WHMMDA method') |
67 | 67 | [para_mmda, Z_mmda] = mmda_sldr(train_data, train_label, dim); % Max-min distance analysis (MMDA)
|
68 | 68 | [para_mmda, Z_whmmda] = whmmda_sldr(train_data, train_label, dim); % Heteroscedastic extension of MMDA
|
69 | 69 | catch
|
|
72 | 72 | warning('WHMMDA was replaced with HLDA to continue this example')
|
73 | 73 | end
|
74 | 74 |
|
75 |
| -disp('PLS-DA method') |
| 75 | +disp('5- PLS-DA method') |
76 | 76 | [para_plsda, Z_plsda] = plsda_sldr(train_data, train_label, dim);% Partial least squares discriminant analysis (PLS‐DA)
|
77 | 77 |
|
78 |
| -disp('SDA method, This method is slowest method') |
| 78 | +disp('6- SDA method, This method is the slowest method') |
79 | 79 | [para_sda, Z_sda] = sda_sldr(train_data, train_label, dim); % Stochastic discriminant analysis (SDA)
|
80 | 80 |
|
81 | 81 | %% some EDA to analysis the results
|
|
0 commit comments