@@ -144,7 +144,7 @@ def test_hdbscan_distance_matrix():
144144 D = distance .squareform (distance .pdist (X ))
145145 D /= np .max (D )
146146
147- labels , p , persist , ctree , ltree , mtree = hdbscan (D , metric = "precomputed" )
147+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (D , metric = "precomputed" )
148148 # number of clusters, ignoring noise if present
149149 n_clusters_1 = len (set (labels )) - int (- 1 in labels ) # ignore noise
150150 assert n_clusters_1 == n_clusters
@@ -167,7 +167,7 @@ def test_hdbscan_sparse_distance_matrix():
167167 D = sparse .csr_matrix (D )
168168 D .eliminate_zeros ()
169169
170- labels , p , persist , ctree , ltree , mtree = hdbscan (D , metric = "precomputed" )
170+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (D , metric = "precomputed" )
171171 # number of clusters, ignoring noise if present
172172 n_clusters_1 = len (set (labels )) - int (- 1 in labels ) # ignore noise
173173 assert n_clusters_1 == n_clusters
@@ -178,7 +178,7 @@ def test_hdbscan_sparse_distance_matrix():
178178
179179
180180def test_hdbscan_feature_vector ():
181- labels , p , persist , ctree , ltree , mtree = hdbscan (X )
181+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (X )
182182 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
183183 assert n_clusters_1 == n_clusters
184184
@@ -191,7 +191,9 @@ def test_hdbscan_feature_vector():
191191
192192
193193def test_hdbscan_prims_kdtree ():
194- labels , p , persist , ctree , ltree , mtree = hdbscan (X , algorithm = "prims_kdtree" )
194+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
195+ X , algorithm = "prims_kdtree"
196+ )
195197 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
196198 assert n_clusters_1 == n_clusters
197199
@@ -203,7 +205,9 @@ def test_hdbscan_prims_kdtree():
203205
204206
205207def test_hdbscan_prims_balltree ():
206- labels , p , persist , ctree , ltree , mtree = hdbscan (X , algorithm = "prims_balltree" )
208+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
209+ X , algorithm = "prims_balltree"
210+ )
207211 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
208212 assert n_clusters_1 == n_clusters
209213
@@ -215,7 +219,9 @@ def test_hdbscan_prims_balltree():
215219
216220
217221def test_hdbscan_boruvka_kdtree ():
218- labels , p , persist , ctree , ltree , mtree = hdbscan (X , algorithm = "boruvka_kdtree" )
222+ labels , p , persist , ctree , ltree , selclstrs , mtree , = hdbscan (
223+ X , algorithm = "boruvka_kdtree"
224+ )
219225 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
220226 assert n_clusters_1 == n_clusters
221227
@@ -229,7 +235,9 @@ def test_hdbscan_boruvka_kdtree():
229235
230236
231237def test_hdbscan_boruvka_balltree ():
232- labels , p , persist , ctree , ltree , mtree = hdbscan (X , algorithm = "boruvka_balltree" )
238+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
239+ X , algorithm = "boruvka_balltree"
240+ )
233241 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
234242 assert n_clusters_1 == n_clusters
235243
@@ -243,7 +251,7 @@ def test_hdbscan_boruvka_balltree():
243251
244252
245253def test_hdbscan_generic ():
246- labels , p , persist , ctree , ltree , mtree = hdbscan (X , algorithm = "generic" )
254+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (X , algorithm = "generic" )
247255 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
248256 assert n_clusters_1 == n_clusters
249257
@@ -261,7 +269,7 @@ def test_hdbscan_high_dimensional():
261269 H , y = make_blobs (n_samples = 50 , random_state = 0 , n_features = 64 )
262270 # H, y = shuffle(X, y, random_state=7)
263271 H = StandardScaler ().fit_transform (H )
264- labels , p , persist , ctree , ltree , mtree = hdbscan (H )
272+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (H )
265273 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
266274 assert n_clusters_1 == n_clusters
267275
@@ -275,7 +283,7 @@ def test_hdbscan_high_dimensional():
275283
276284
277285def test_hdbscan_best_balltree_metric ():
278- labels , p , persist , ctree , ltree , mtree = hdbscan (
286+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
279287 X , metric = "seuclidean" , V = np .ones (X .shape [1 ])
280288 )
281289 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
@@ -287,7 +295,9 @@ def test_hdbscan_best_balltree_metric():
287295
288296
289297def test_hdbscan_no_clusters ():
290- labels , p , persist , ctree , ltree , mtree = hdbscan (X , min_cluster_size = len (X ) + 1 )
298+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
299+ X , min_cluster_size = len (X ) + 1
300+ )
291301 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
292302 assert n_clusters_1 == 0
293303
@@ -298,7 +308,7 @@ def test_hdbscan_no_clusters():
298308
299309def test_hdbscan_min_cluster_size ():
300310 for min_cluster_size in range (2 , len (X ) + 1 , 1 ):
301- labels , p , persist , ctree , ltree , mtree = hdbscan (
311+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
302312 X , min_cluster_size = min_cluster_size
303313 )
304314 true_labels = [label for label in labels if label != - 1 ]
@@ -315,7 +325,7 @@ def test_hdbscan_callable_metric():
315325 # metric is the function reference, not the string key.
316326 metric = distance .euclidean
317327
318- labels , p , persist , ctree , ltree , mtree = hdbscan (X , metric = metric )
328+ labels , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (X , metric = metric )
319329 n_clusters_1 = len (set (labels )) - int (- 1 in labels )
320330 assert n_clusters_1 == n_clusters
321331
@@ -333,8 +343,10 @@ def test_hdbscan_boruvka_kdtree_matches():
333343
334344 data = generate_noisy_data ()
335345
336- labels_prims , p , persist , ctree , ltree , mtree = hdbscan (data , algorithm = "generic" )
337- labels_boruvka , p , persist , ctree , ltree , mtree = hdbscan (
346+ labels_prims , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
347+ data , algorithm = "generic"
348+ )
349+ labels_boruvka , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
338350 data , algorithm = "boruvka_kdtree"
339351 )
340352
@@ -354,8 +366,10 @@ def test_hdbscan_boruvka_balltree_matches():
354366
355367 data = generate_noisy_data ()
356368
357- labels_prims , p , persist , ctree , ltree , mtree = hdbscan (data , algorithm = "generic" )
358- labels_boruvka , p , persist , ctree , ltree , mtree = hdbscan (
369+ labels_prims , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
370+ data , algorithm = "generic"
371+ )
372+ labels_boruvka , p , persist , ctree , ltree , selclstrs , mtree = hdbscan (
359373 data , algorithm = "boruvka_balltree"
360374 )
361375
0 commit comments