Skip to content

Remove temporal solution for selecting type of input dataset #3

@gcerar

Description

@gcerar

The CTW2019 and CTW2020's dvc.yaml config currently uses a list of models and inputs. This was a temporary workaround when the solution was a work in progress. The final goal is to move all models and input types/variants specified in params.yaml file. I think this still needs to be talked through. A possible solution is something like this:

# dvc.yaml
  benchmark:
    desc: Determine best hyper-parameters for algorithm on several CVs
    matrix:
      split: ${splits}
      model:  # <--- We remove this
        - name: XGBRegressor
          input: ${path.data}/prepared/ctw2020.flatten.pkl
        - name: RandomForestRegressor
          input: ${path.data}/prepared/ctw2020.flatten.pkl
        - name: Arnold2018DeepModel
          input: ${path.data}/prepared/ctw2020.flatten.pkl
        - name: Arnold2019SoundingModel
          input: ${path.data}/prepared/ctw2020.pkl
        - name: Pirnat2022Pirnat1G
          input: ${path.data}/prepared/ctw2020.pkl
        - name: Cerar2021Localization
          input: ${path.data}/prepared/ctw2020.pkl
    ...
# params.yaml
models:
  Arnold2018DeepModel:
    input_type: bchw # <--- and introduce this (possible values something like: flatten, bchw, chwc)
    ... 

It's crucial to update the benchmark.py script to match the changes in the dvc.yaml and params.yaml configs.

Metadata

Metadata

Assignees

Labels

enhancementNew feature or request

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions