Skip to content

Commit e1c1c67

Browse files
lingvo-botcopybara-github
authored andcommitted
Fix some more pylint warnings.
PiperOrigin-RevId: 590717548
1 parent 07f5336 commit e1c1c67

File tree

1 file changed

+23
-2
lines changed

1 file changed

+23
-2
lines changed

lingvo/core/layers.py

Lines changed: 23 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -608,9 +608,12 @@ def FProp(self, theta, inputs, paddings=None):
608608
def _Compute(self, theta, inputs, paddings, conv_padding):
609609
"""Computes the forward prop (conv, bn, act)."""
610610
p = self.params
611+
del paddings
611612

612613
bn_padding = conv_padding
613614
if bn_padding is None:
615+
batch_time = None
616+
batch_time_any_any = None
614617
bn_padding_expanded = None
615618
else:
616619
batch_time = tf.shape(bn_padding)
@@ -644,6 +647,7 @@ def _ComputeConvLast(self, theta, inputs, paddings, conv_padding):
644647
p = self.params
645648
out = inputs
646649
out_padding = paddings
650+
del conv_padding
647651

648652
if p.batch_norm:
649653
if out_padding is None:
@@ -1014,6 +1018,7 @@ def _CreateLayerVariables(self):
10141018
init=p.params_init,
10151019
dtype=p.dtype,
10161020
collections=[self.__class__.__name__ + '_vars'])
1021+
mix_kernel_pc = None
10171022
elif p.use_block_diagonal_matmul:
10181023
w_pc = py_utils.WeightParams(
10191024
shape=(p.bd_num_blocks, p.input_dim // p.bd_num_blocks,
@@ -1039,6 +1044,7 @@ def _CreateLayerVariables(self):
10391044
device_mesh=p.device_mesh,
10401045
tensor_split_dims_mapping=p.weight_split_dims_mapping,
10411046
collections=[self.__class__.__name__ + '_vars'])
1047+
mix_kernel_pc = None
10421048

10431049
if p.apply_pruning:
10441050
mask_w_pc = py_utils.WeightParams(w_pc.shape,
@@ -1047,6 +1053,9 @@ def _CreateLayerVariables(self):
10471053
threshold_w_pc = py_utils.WeightParams([],
10481054
py_utils.WeightInit.Constant(0.0),
10491055
tf.float32)
1056+
else:
1057+
mask_w_pc = None
1058+
threshold_w_pc = None
10501059
if p.has_bias:
10511060
if p.device_mesh is not None:
10521061
bias_split_dims_mapping = [p.weight_split_dims_mapping[1]]
@@ -1059,12 +1068,16 @@ def _CreateLayerVariables(self):
10591068
device_mesh=p.device_mesh,
10601069
tensor_split_dims_mapping=bias_split_dims_mapping,
10611070
collections=[self.__class__.__name__ + '_vars'])
1071+
else:
1072+
b_pc = None
10621073
if p.weight_norm:
10631074
g_pc = py_utils.WeightParams(
10641075
shape=[self._internal_output_dim],
10651076
init=py_utils.WeightInit.Constant(0.0),
10661077
dtype=p.dtype,
10671078
collections=[self.__class__.__name__ + '_vars'])
1079+
else:
1080+
g_pc = None
10681081

10691082
weights_var_name = 'w'
10701083
if p.apply_pruning:
@@ -1450,6 +1463,8 @@ def _CreateLayerVariables(self):
14501463
dtype=p.dtype,
14511464
collections=[self.__class__.__name__ + '_vars'],
14521465
)
1466+
else:
1467+
b_pc = None
14531468
w_name = 'w'
14541469
self.CreateVariable(w_name, w_pc)
14551470
self.TrackQWeight(w_name, shape=w_pc.shape, feature_axis=-1)
@@ -3442,9 +3457,8 @@ class RotaryPositionalEmbeddingLayer(PositionalEmbeddingLayer):
34423457
The Rotary position embedding is described in https://arxiv.org/abs/2104.09864
34433458
"""
34443459

3445-
# pylint: disable=arguments-renamed
3460+
# pylint: disable-next=arguments-renamed
34463461
def FProp(self, theta, inputs, position=None):
3447-
# pylint: enable=arguments-renamed
34483462
"""Generates a JTensor of sinusoids with different frequencies.
34493463
34503464
Args:
@@ -3759,6 +3773,9 @@ def _CreateLayerVariables(self):
37593773
threshold_pc = py_utils.WeightParams([],
37603774
py_utils.WeightInit.Constant(0.0),
37613775
tf.float32)
3776+
else:
3777+
mask_pc = None
3778+
threshold_pc = None
37623779

37633780
for i in range(p.num_shards):
37643781
weights_var_name = f'weight_{i}'
@@ -4315,6 +4332,8 @@ def XentLossFromLogits(self,
43154332
class_ids=None,
43164333
class_probabilities=None):
43174334
"""Computes cross-entropy, argmax etc. from logits."""
4335+
del theta
4336+
del class_weights
43184337
p = self.params
43194338
assert logits is not None
43204339
per_example_argmax = py_utils.ArgMax(logits)
@@ -4819,6 +4838,7 @@ def Params(cls):
48194838
return p
48204839

48214840
def _Dropout(self, theta, inputs, noise_shape):
4841+
del theta
48224842
return tf.nn.dropout(
48234843
inputs,
48244844
rate=1 - self.params.keep_prob,
@@ -4827,6 +4847,7 @@ def _Dropout(self, theta, inputs, noise_shape):
48274847

48284848
@classmethod
48294849
def NumOutputNodes(cls, p):
4850+
del p
48304851
# The layer does element-wise processing thus is input-shape agnostic.
48314852
return
48324853

0 commit comments

Comments
 (0)