Skip to content

Binomial MARS model returns Gaussian coefficients when parsed in tidypredict_fit() and tidypredict_sql() #97

@brettefaw

Description

@brettefaw

It appears that tidypredict_fit() and tidypredict_sql() are returned a parsed model that has the Gaussian coefficients instead of the Binomial coefficients when a MARS model is fit using the earth package. The example below was done using R version 4.0.2, tidypredict_0.4.8 and earth_5.3.0. A comparison to parsed models using glm() is also included for reference.

library(earth)
library(tidyverse)
library(tidypredict)
data("etitanic", package = "earth")

MARS w/ Binomial

mars.mod.1 <- 
  earth(
    survived ~ age + sex,
    data = etitanic,
    glm = list(family = binomial)
  )
coef(mars.mod.1)

#> (Intercept) sexmale h(9-age)
#> 1.0499562 -2.4754699 0.1692326

MARS w/ Gaussian

mars.mod.2 <-
  earth(
    survived ~ age + sex,
    data = etitanic,
    glm = list(family = gaussian)
  )
coef(mars.mod.2)

#> (Intercept) sexmale h(9-age)
#> 0.73782144 -0.54239536 0.02975461
The parsed model w/ binomial returns the Gaussian model coefficients with the Sigmoid function applied

tidypredict_fit(mars.mod.1)

#> 1 - 1/(1 + exp(0.737821439264803 + (ifelse(age < 9, 9 - age,
#> 0) * 0.0297546135084789) + (ifelse(sex == "male", 1, 0) *
#> -0.542395361228247)))

tidypredict_fit(mars.mod.2)

#> 0.737821439264803 + (ifelse(age < 9, 9 - age, 0) * 0.0297546135084789) +
#> (ifelse(sex == "male", 1, 0) * -0.542395361228247)
Compare tidypredict with predict (fit and pred columns are not the same)

etitanic %>%
  tidypredict_to_column(mars.mod.1) %>%
  mutate(pred = predict(mars.mod.1, type = "response")[,1]) %>%
  head(10) 

#> pclass survived sex age sibsp parch fit pred
#> 1 1st 1 female 29.0000 0 0 0.6765193 0.7407665
#> 2 1st 1 male 0.9167 1 2 0.6072916 0.4856151
#> 3 1st 0 female 2.0000 1 2 0.7203309 0.9033125
#> 4 1st 0 male 30.0000 1 2 0.5487016 0.1937987
#> 5 1st 0 female 25.0000 1 2 0.6765193 0.7407665
#> 6 1st 1 male 48.0000 0 0 0.5487016 0.1937987
#> 7 1st 1 female 63.0000 1 0 0.6765193 0.7407665
#> 8 1st 0 male 39.0000 0 0 0.5487016 0.1937987
#> 9 1st 1 female 53.0000 2 0 0.6765193 0.7407665
#> 10 1st 0 male 71.0000 0 0 0.5487016 0.1937987

Contrast with GLM

GLM w/ binomial

glm.mod.1 <-
  glm(
    survived ~ age + sex,
    data = etitanic,
    family = binomial
  )
coef(glm.mod.1)

#> (Intercept) age sexmale
#> 1.235414162 -0.004254246 -2.460689180

GLM w/ Gaussian

glm.mod.2 <-
  glm(
    survived ~ age + sex,
    data = etitanic,
    family = gaussian
  )
coef(glm.mod.2)

#> (Intercept) age sexmale
#> 0.7734801846 -0.0007286511 -0.5460270483
Coefficients match GLM model 1 above

tidypredict_fit(glm.mod.1)

#> 1 - 1/(1 + exp(1.23541416209053 + (age * -0.00425424604207735) +
#> (ifelse(sex == "male", 1, 0) * -2.46068918004127)))
Coefficients match GLM model 2 above

tidypredict_fit(glm.mod.2) 

#> 0.773480184644955 + (age * -0.000728651082406954) + (ifelse(sex ==
#> "male", 1, 0) * -0.546027048277061)
Compare predictions (fit and pred match)

etitanic %>%
  tidypredict_to_column(glm.mod.1) %>%
  mutate(pred = predict(glm.mod.1, type = "response")) %>%
  head(10)

#> pclass survived sex age sibsp parch fit pred
#> 1 1st 1 female 29.0000 0 0 0.7525094 0.7525094
#> 2 1st 1 male 0.9167 1 2 0.2263259 0.2263259
#> 3 1st 0 female 2.0000 1 2 0.7732765 0.7732765
#> 4 1st 0 male 30.0000 1 2 0.2053963 0.2053963
#> 5 1st 0 female 25.0000 1 2 0.7556650 0.7556650
#> 6 1st 1 male 48.0000 0 0 0.1931799 0.1931799
#> 7 1st 1 female 63.0000 1 0 0.7246003 0.7246003
#> 8 1st 0 male 39.0000 0 0 0.1992178 0.1992178
#> 9 1st 1 female 53.0000 2 0 0.7330082 0.7330082
#> 10 1st 0 male 71.0000 0 0 0.1783852 0.1783852

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions