-
Notifications
You must be signed in to change notification settings - Fork 33
Open
Description
- output layout is CHW, using perf_analyzer to profile.
@autoserialize
@dali.pipeline_def(batch_size=3, num_threads=1, device_id=0)
def pipe():
images = dali.fn.external_source(device="cpu", name="encoded")
images = dali.fn.decoders.image(images, device="mixed", output_type=types.RGB)
images = dali.fn.resize(images, resize_x=299, resize_y=299)
images = dali.fn.crop_mirror_normalize(images,
dtype=types.FLOAT,
output_layout="CHW",
crop=(299, 299),
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
return images
- output layout is HWC
@autoserialize
@dali.pipeline_def(batch_size=3, num_threads=1, device_id=0)
def pipe():
images = dali.fn.external_source(device="cpu", name="encoded")
images = dali.fn.decoders.image(images, device="mixed", output_type=types.RGB)
images = dali.fn.resize(images, resize_x=299, resize_y=299)
images = dali.fn.crop_mirror_normalize(images,
dtype=types.FLOAT,
output_layout="HWC",
crop=(299, 299),
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
std=[0.229 * 255, 0.224 * 255, 0.225 * 255])
return images
Most of time, model input layout is "NCHW", is there any way we can improve performance?
Metadata
Metadata
Assignees
Labels
No labels