-
-
Notifications
You must be signed in to change notification settings - Fork 10.3k
Open
Labels
bugSomething isn't workingSomething isn't working
Description
Your current environment
The output of python collect_env.py
==============================
System Info
==============================
OS : Ubuntu 22.04.5 LTS (x86_64)
GCC version : (Ubuntu 11.4.0-1ubuntu1~22.04.2) 11.4.0
Clang version : Could not collect
CMake version : version 3.27.2
Libc version : glibc-2.35
==============================
PyTorch Info
==============================
PyTorch version : 2.8.0+cu128
Is debug build : False
CUDA used to build PyTorch : 12.8
ROCM used to build PyTorch : N/A
==============================
Python Environment
==============================
Python version : 3.11.5 (main, Sep 11 2023, 13:54:46) [GCC 11.2.0] (64-bit runtime)
Python platform : Linux-5.15.0-143-generic-x86_64-with-glibc2.35
==============================
CUDA / GPU Info
==============================
Is CUDA available : True
CUDA runtime version : 11.5.119
CUDA_MODULE_LOADING set to : LAZY
GPU models and configuration :
GPU 0: NVIDIA A100 80GB PCIe
GPU 1: NVIDIA A100 80GB PCIe
GPU 2: NVIDIA A100 80GB PCIe
GPU 3: NVIDIA A100 80GB PCIe
GPU 4: NVIDIA A100 80GB PCIe
GPU 5: NVIDIA A100 80GB PCIe
GPU 6: NVIDIA A100 80GB PCIe
GPU 7: NVIDIA A100 80GB PCIe
Nvidia driver version : 535.161.07
cuDNN version : Could not collect
HIP runtime version : N/A
MIOpen runtime version : N/A
Is XNNPACK available : True
==============================
CPU Info
==============================
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 48 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Vendor ID: AuthenticAMD
Model name: AMD EPYC 7543 32-Core Processor
CPU family: 25
Model: 1
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
Stepping: 1
Frequency boost: enabled
CPU max MHz: 2800.0000
CPU min MHz: 1500.0000
BogoMIPS: 5589.39
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr rdpru wbnoinvd amd_ppin arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif v_spec_ctrl umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca fsrm
Virtualization: AMD-V
L1d cache: 2 MiB (64 instances)
L1i cache: 2 MiB (64 instances)
L2 cache: 32 MiB (64 instances)
L3 cache: 512 MiB (16 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-31,64-95
NUMA node1 CPU(s): 32-63,96-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit: Not affected
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed: Not affected
Vulnerability Spec rstack overflow: Mitigation; safe RET
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Not affected
==============================
Versions of relevant libraries
==============================
[pip3] numpy==2.2.6
[pip3] nvidia-cublas-cu12==12.8.4.1
[pip3] nvidia-cuda-cupti-cu12==12.8.90
[pip3] nvidia-cuda-nvrtc-cu12==12.8.93
[pip3] nvidia-cuda-runtime-cu12==12.8.90
[pip3] nvidia-cudnn-cu12==9.10.2.21
[pip3] nvidia-cufft-cu12==11.3.3.83
[pip3] nvidia-cufile-cu12==1.13.1.3
[pip3] nvidia-curand-cu12==10.3.9.90
[pip3] nvidia-cusolver-cu12==11.7.3.90
[pip3] nvidia-cusparse-cu12==12.5.8.93
[pip3] nvidia-cusparselt-cu12==0.7.1
[pip3] nvidia-nccl-cu12==2.27.3
[pip3] nvidia-nvjitlink-cu12==12.8.93
[pip3] nvidia-nvtx-cu12==12.8.90
[pip3] pyzmq==27.1.0
[pip3] torch==2.8.0
[pip3] torchaudio==2.8.0
[pip3] torchvision==0.23.0
[pip3] transformers==4.56.1
[pip3] triton==3.4.0
[conda] numpy 1.26.4 pypi_0 pypi
[conda] nvidia-cublas-cu11 11.10.3.66 pypi_0 pypi
[conda] nvidia-cublas-cu12 12.6.4.1 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu11 11.7.101 pypi_0 pypi
[conda] nvidia-cuda-cupti-cu12 12.6.80 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu11 11.7.99 pypi_0 pypi
[conda] nvidia-cuda-nvrtc-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu11 11.7.99 pypi_0 pypi
[conda] nvidia-cuda-runtime-cu12 12.6.77 pypi_0 pypi
[conda] nvidia-cudnn-cu11 8.5.0.96 pypi_0 pypi
[conda] nvidia-cudnn-cu12 9.5.1.17 pypi_0 pypi
[conda] nvidia-cufft-cu11 10.9.0.58 pypi_0 pypi
[conda] nvidia-cufft-cu12 11.3.0.4 pypi_0 pypi
[conda] nvidia-cufile-cu12 1.11.1.6 pypi_0 pypi
[conda] nvidia-curand-cu11 10.2.10.91 pypi_0 pypi
[conda] nvidia-curand-cu12 10.3.7.77 pypi_0 pypi
[conda] nvidia-cusolver-cu11 11.4.0.1 pypi_0 pypi
[conda] nvidia-cusolver-cu12 11.7.1.2 pypi_0 pypi
[conda] nvidia-cusparse-cu11 11.7.4.91 pypi_0 pypi
[conda] nvidia-cusparse-cu12 12.5.4.2 pypi_0 pypi
[conda] nvidia-cusparselt-cu12 0.6.3 pypi_0 pypi
[conda] nvidia-nccl-cu11 2.14.3 pypi_0 pypi
[conda] nvidia-nccl-cu12 2.26.2 pypi_0 pypi
[conda] nvidia-nvjitlink-cu12 12.6.85 pypi_0 pypi
[conda] nvidia-nvtx-cu11 11.7.91 pypi_0 pypi
[conda] nvidia-nvtx-cu12 12.6.77 pypi_0 pypi
[conda] pynvml 11.5.3 pypi_0 pypi
[conda] pytorch-lightning 2.4.0 pypi_0 pypi
[conda] pytorch-metric-learning 2.2.0 pypi_0 pypi
[conda] pyzmq 26.2.1 pypi_0 pypi
[conda] sentence-transformers 5.1.0 pypi_0 pypi
[conda] torch 2.7.0 pypi_0 pypi
[conda] torch-vision 0.1.6.dev0 pypi_0 pypi
[conda] torchaudio 2.7.0 pypi_0 pypi
[conda] torchmetrics 1.4.1 pypi_0 pypi
[conda] torchvision 0.22.0 pypi_0 pypi
[conda] transformers 4.52.0 pypi_0 pypi
[conda] triton 3.3.0 pypi_0 pypi
==============================
vLLM Info
==============================
ROCM Version : Could not collect
vLLM Version : 0.10.2
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NV12 NODE NODE SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU1 NV12 X NODE NODE SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU2 NODE NODE X NODE SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU3 NODE NODE NODE X SYS SYS SYS SYS 0-31,64-95 0 N/A
GPU4 SYS SYS SYS SYS X NODE NODE NODE 32-63,96-127 1 N/A
GPU5 SYS SYS SYS SYS NODE X NODE NODE 32-63,96-127 1 N/A
GPU6 SYS SYS SYS SYS NODE NODE X NODE 32-63,96-127 1 N/A
GPU7 SYS SYS SYS SYS NODE NODE NODE X 32-63,96-127 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
==============================
Environment Variables
==============================
CUDA_VISIBLE_DEVICES=1
CUDA_VISIBLE_DEVICES=1
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY
🐛 Describe the bug
When attempting to get embeddings from jinaai/jina-embeddings-v4-vllm-text-matching
(based on the Qwen2_5_VLForConditionalGeneration
architecture), I encounter the following error:
(EngineCore_DP0 pid=1671528) File "/home/admin/saba/vllm-bug/venv/lib/python3.11/site-packages/vllm/model_executor/model_loader/base_loader.py", line 45, in load_model
(EngineCore_DP0 pid=1671528) model = initialize_model(vllm_config=vllm_config,
(EngineCore_DP0 pid=1671528) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=1671528) File "/home/admin/saba/vllm-bug/venv/lib/python3.11/site-packages/vllm/model_executor/model_loader/utils.py", line 64, in initialize_model
(EngineCore_DP0 pid=1671528) return model_class(vllm_config=vllm_config, prefix=prefix)
(EngineCore_DP0 pid=1671528) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=1671528) File "/home/admin/saba/vllm-bug/venv/lib/python3.11/site-packages/vllm/model_executor/models/adapters.py", line 163, in __init__
(EngineCore_DP0 pid=1671528) super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)
(EngineCore_DP0 pid=1671528) File "/home/admin/saba/vllm-bug/venv/lib/python3.11/site-packages/vllm/model_executor/models/qwen2_5_vl.py", line 943, in __init__
(EngineCore_DP0 pid=1671528) self.language_model = init_vllm_registered_model(
(EngineCore_DP0 pid=1671528) ^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=1671528) File "/home/admin/saba/vllm-bug/venv/lib/python3.11/site-packages/vllm/model_executor/models/utils.py", line 316, in init_vllm_registered_model
(EngineCore_DP0 pid=1671528) return initialize_model(vllm_config=vllm_config, prefix=prefix)
(EngineCore_DP0 pid=1671528) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=1671528) File "/home/admin/saba/vllm-bug/venv/lib/python3.11/site-packages/vllm/model_executor/model_loader/utils.py", line 64, in initialize_model
(EngineCore_DP0 pid=1671528) return model_class(vllm_config=vllm_config, prefix=prefix)
(EngineCore_DP0 pid=1671528) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=1671528) File "/home/admin/saba/vllm-bug/venv/lib/python3.11/site-packages/vllm/model_executor/models/adapters.py", line 196, in __init__
(EngineCore_DP0 pid=1671528) self._init_pooler(vllm_config, prefix=prefix)
(EngineCore_DP0 pid=1671528) File "/home/admin/saba/vllm-bug/venv/lib/python3.11/site-packages/vllm/model_executor/models/adapters.py", line 260, in _init_pooler
(EngineCore_DP0 pid=1671528) self.pooler = DispatchPooler(
(EngineCore_DP0 pid=1671528) ^^^^^^^^^^^^^^^
(EngineCore_DP0 pid=1671528) File "/home/admin/saba/vllm-bug/venv/lib/python3.11/site-packages/vllm/model_executor/layers/pooler.py", line 696, in __init__
(EngineCore_DP0 pid=1671528) raise ValueError(
(EngineCore_DP0 pid=1671528) ValueError: pooler=SimplePooler(
(EngineCore_DP0 pid=1671528) (pooling): AllPool()
(EngineCore_DP0 pid=1671528) (head): EmbeddingPoolerHead(
(EngineCore_DP0 pid=1671528) (activation): PoolerNormalize()
(EngineCore_DP0 pid=1671528) )
(EngineCore_DP0 pid=1671528) ) does not support task='embed'. Supported tasks: {'encode'}
This happens when I override pooling_type to "ALL". This is necessary because the model has a custom pooling method, and I need all last hidden states to do pooling afterwards. (See: model usage example.)
This same code worked in previous versions of vLLM, so this seems to be a recent change.
Code to reproduce:
from vllm import LLM
from vllm.config import PoolerConfig
model = LLM(
model="jinaai/jina-embeddings-v4-vllm-text-matching",
task="embed", # same error with "embedding" and "encode"
override_pooler_config=PoolerConfig(pooling_type="ALL"),
)
texts = ["Test Test"]
outputs = model.encode(texts, pooling_task="embed") # same error with model.embed(texts)
Is it possible to support "ALL" pooling_type for models with custom pooling methods? If not, is there a recommended workaround?
Before submitting a new issue...
- Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Metadata
Metadata
Assignees
Labels
bugSomething isn't workingSomething isn't working