@@ -133,7 +133,7 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py
133
133
| ADSCNet | 2019 | None | n.a. / 0.51 | 89 | n.a. / 67.5 | [ 69.06] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/adscnet.pth ) |
134
134
| AGLNet | 2020 | None | 1.12 / 1.02 | 61 | 69.39 / 70.1 | [ 73.58] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/aglnet.pth ) |
135
135
| BiSeNetv1 | 2018 | ResNet18 | 49.0 / 13.32 | 88 | 74.8 / 74.7 | [ 74.91] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/bisenetv1.pth ) |
136
- | BiSeNetv2 | 2020 | None | n.a. / 2.27 | 142 | 73.4 / 72.6 | [ 73.73< sup >3</ sup > ] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/bisenetv2-aux.pth ) |
136
+ | BiSeNetv2 | 2020 | None | n.a. / 2.27 | 142 | 73.4 / 72.6 | [ 73.73] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/bisenetv2-aux.pth ) < sup >3</ sup > |
137
137
| CANet | 2019 | MobileNetv2 | 4.8 / 4.77 | 76 | 73.4 / 73.5 | [ 76.59] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.1/canet.pth ) |
138
138
| CFPNet | 2021 | None | 0.55 / 0.27 | 64 | n.a. / 70.1 | [ 70.08] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/cfpnet.pth ) |
139
139
| CGNet | 2018 | None | 0.41 / 0.24 | 157 | 59.7 / 64.8<sup >4</sup > | [ 67.25] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/cgnet.pth ) |
@@ -160,34 +160,34 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py
160
160
| MiniNetv2 | 2020 | None | 0.5 / 0.51 | 86 | n.a. / 70.5 | [ 71.79] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/mininetv2.pth ) |
161
161
| PP-LiteSeg | 2022 | STDC1 | n.a. / 6.33 | 201 | 76.0 / 74.9 | [ 72.49] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/ppliteseg_stdc1.pth ) |
162
162
| PP-LiteSeg | 2022 | STDC2 | n.a. / 10.56 | 136 | 78.2 / 77.5 | [ 74.37] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/ppliteseg_stdc2.pth ) |
163
- | RegSeg | 2021 | None | 3.34 / 3.37 | 104 | 78.5 / 78.3 | 74.28 |
163
+ | RegSeg | 2021 | None | 3.34 / 3.37 | 104 | 78.5 / 78.3 | [ 74.28] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/regseg.pth ) |
164
164
| SegNet | 2015 | None | 29.46 / 29.48 | 14 | n.a. / 56.1 | [ 70.77] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/segnet.pth ) |
165
165
| ShelfNet | 2018 | ResNet18 | 23.5 / 16.04 | 110 | n.a. / 74.8 | [ 77.63] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/shelfnet.pth ) |
166
166
| SQNet | 2016 | SqueezeNet-1.1 | n.a. / 4.81 | 69 | n.a. / 59.8 | [ 69.55] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/sqnet.pth ) |
167
- | STDC | 2021 | STDC1 | n.a. / 7.79 | 163 | 74.5 / 75.3 | 75.25<sup >6</sup > |
168
- | STDC | 2021 | STDC2 | n.a. / 11.82 | 119 | 77.0 / 76.8 | 76.78<sup >6</sup > |
167
+ | STDC | 2021 | STDC1 | n.a. / 7.79 | 163 | 74.5 / 75.3 | [ 75.25] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/stdc1.pth ) <sup >6</sup > |
168
+ | STDC | 2021 | STDC2 | n.a. / 11.82 | 119 | 77.0 / 76.8 | [ 76.78] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/stdc2.pth ) <sup >6</sup > |
169
169
| SwiftNet | 2019 | ResNet18 | 11.8 / 11.95 | 141 | 75.4 / 75.5 | [ 75.43] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/swiftnet.pth ) |
170
170
171
171
[ <sup >1</sup >FPSs are evaluated on RTX 2080 at resolution 1024x512 using this [ script] ( tools/test_speed.py )]
172
172
[ <sup >2</sup >These results are obtained by training 800 epochs with crop-size 1024x1024]
173
173
[ <sup >3</sup >These results are obtained by using auxiliary heads]
174
174
[ <sup >4</sup >This result is obtained by using deeper model, i.e. CGNet_M3N21]
175
175
[ <sup >5</sup >The original encoder of ICNet is ResNet50]
176
- [ <sup >6</sup >In my experiments, detail loss does not improve the performances. However, use auxiliary heads do contribute to the improvements]
176
+ [ <sup >6</sup >In my experiments, detail loss does not improve the performances. However, using auxiliary heads does contribute to the improvements]
177
177
178
178
## SMP performance on Cityscapes
179
179
180
- | Decoder | Params (M) | mIoU (200 epoch) | mIoU (800 epoch) |
181
- | :-------------:| :----------:| :----------------:| :----------------:|
182
- | DeepLabv3 | 15.90 | 75.22 | 77.16 |
183
- | DeepLabv3Plus | 12.33 | 73.97 | 75.90 |
184
- | FPN | 13.05 | 73.44 | 74.94 |
185
- | LinkNet | 11.66 | 71.17 | 73.19 |
186
- | MANet | 21.68 | 74.59 | 76.14 |
187
- | PAN | 11.37 | 70.25 | 72.46 |
188
- | PSPNet | 11.41 | 61.63 | 67.26 |
189
- | UNet | 14.33 | 72.99 | 74.45 |
190
- | UNetPlusPlus | 15.97 | 74.31 | 75.57 |
180
+ | Decoder | Params (M) | mIoU (200 epoch) | mIoU (800 epoch) |
181
+ | :-------------:| :----------:| :----------------:| :-------------------------------------------------------------------------------------------------------------- :|
182
+ | DeepLabv3 | 15.90 | 75.22 | [ 77.16] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/deeplabv3.pth ) |
183
+ | DeepLabv3Plus | 12.33 | 73.97 | [ 75.90] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/deeplabv3p.pth ) |
184
+ | FPN | 13.05 | 73.44 | [ 74.94] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/fpn.pth ) |
185
+ | LinkNet | 11.66 | 71.17 | [ 73.19] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/linknet.pth ) |
186
+ | MANet | 21.68 | 74.59 | [ 76.14] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/manet.pth ) |
187
+ | PAN | 11.37 | 70.25 | [ 72.46] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/pan.pth ) |
188
+ | PSPNet | 11.41 | 61.63 | [ 67.26] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/pspnet.pth ) |
189
+ | UNet | 14.33 | 72.99 | [ 74.45] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/unet.pth ) |
190
+ | UNetPlusPlus | 15.97 | 74.31 | [ 75.57] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.2/unetpp.pth ) |
191
191
192
192
[ For comparison, the above results are all using ResNet-18 as encoders.]
193
193
0 commit comments