@@ -119,40 +119,40 @@ CUDA_VISIBLE_DEVICES=0,1,2,3 python main.py
119
119
## full resolution on Cityscapes
120
120
| Model | Encoder | Params (M) <br > paper / my | FPS<sup >1</sup > | mIoU (paper) <br > val / test| mIoU (my) val<sup >2</sup >|
121
121
| :---: | :---: | :---: | :---: | :---: | :---: |
122
- | ADSCNet | None | n.a. / 0.51 | 89 | n.a. / 67.5 | [ 69.06] ( weights/adscnet_crop-1024_800epoch .pth) |
123
- | AGLNet | None | 1.12 / 1.02 | 61 | 69.39 / 70.1 | [ 73.58] ( weights/aglnet_crop-1024_800epoch .pth) |
124
- | BiSeNetv1 | ResNet18 | 49.0 / 13.32 | 88 | 74.8 / 74.7 | [ 74.91] ( weights/bisenetv1_crop-1024_800epoch .pth) |
125
- | BiSeNetv2 | None | n.a. / 2.53 | 142 | 73.4 / 72.6 | [ 73.73<sup >3</sup >] ( weights/bisenetv2-aux_crop-1024_800epoch .pth) |
126
- | CANet | MobileNetv2 | 4.8 / 4.77 | 76 | 73.4 / 73.5 | [ 73.76] ( weights/canet_crop-1024_800epoch .pth) |
127
- | CFPNet | None | 0.55 / 0.27 | 64 | n.a. / 70.1 | [ 70.08] ( weights/cfpnet_crop-1024_800epoch .pth) |
128
- | CGNet | None | 0.41 / 0.24 | 157 | 59.7 / 64.8<sup >4</sup > | [ 67.25] ( weights/cgnet_crop-1024_800epoch .pth) |
129
- | ContextNet | None | 0.85 / 1.01 | 80 | 65.9 / 66.1 | [ 66.61] ( weights/contextnet_crop-1024_800epoch .pth) |
130
- | DABNet | None | 0.76 / 0.75 | 140 | n.a. / 70.1 | [ 70.78] ( weights/dabnet_crop-1024_800epoch .pth) |
131
- | DDRNet | None | 5.7 / 5.54 | 233 | 77.8 / 77.4 | [ 74.34] ( weights/ ddrnet-23-slim_crop-1024_800epoch .pth) |
132
- | DFANet | XceptionA | 7.8 / 3.05 | 60 | 71.9 / 71.3 | [ 65.28] ( weights/dfanet-a_crop-1024_800epoch .pth) |
133
- | EDANet | None | 0.68 / 0.69 | 125 | n.a. / 67.3 | [ 70.76] ( weights/edanet_crop-1024_800epoch .pth) |
134
- | ENet | None | 0.37 / 0.37 | 140 | n.a. / 58.3 | [ 71.31] ( weights/enet_crop-1024_800epoch .pth) |
135
- | ERFNet | None | 2.06 / 2.07 | 60 | 70.0 / 68.0 | [ 76.00] ( weights/erfnet_crop-1024_800epoch .pth) |
136
- | ESNet | None | 1.66 / 1.66 | 66 | n.a. / 70.7 | [ 71.82] ( weights/esnet_crop-1024_800epoch .pth) |
137
- | ESPNet | None | 0.36 / 0.38 | 111 | n.a. / 60.3 | [ 66.39] ( weights/espnet_crop-1024_800epoch .pth) |
138
- | ESPNetv2 | None | 1.25 / 0.86 | 101 | 66.4 / 66.2 | [ 70.35] ( weights/espnetv2_crop-1024_800epoch .pth) |
139
- | FarseeNet | ResNet18 | n.a. / 16.75 | 130 | 73.5 / 70.2 | [ 77.35] ( weights/farseenet_crop-1024_800epoch .pth) |
140
- | FastSCNN | None | 1.11 / 1.02 | 358 | 68.6 / 68.0 | [ 69.37] ( weights/fastscnn_crop-1024_800epoch .pth) |
141
- | FDDWNet | None | 0.80 / 0.77 | 51 | n.a. / 71.5 | [ 75.86] ( weights/fddwnet_crop-1024_800epoch .pth) |
142
- | FPENet | None | 0.38 / 0.36 | 90 | n.a. / 70.1 | [ 72.05] ( weights/fpenet_crop-1024_800epoch .pth) |
143
- | FSSNet | None | 0.2 / 0.20 | 121 | n.a. / 58.8 | [ 65.44] ( weights/fssnet_crop-1024_800epoch .pth) |
144
- | ICNet | ResNet18 | 26.5<sup >5</sup > / 12.42 | 102 | 67.7<sup >5</sup > / 69.5<sup >5</sup > | [ 69.65] ( weights/icnet_crop-1024_800epoch .pth) |
145
- | LEDNet | None | 0.94 / 1.46 | 76 | n.a. / 70.6 | [ 71.40] ( weights/lednet_crop-1024_800epoch .pth) |
146
- | LinkNet | None | 11.5 / 11.71 | 145 | n.a. / 76.4| [ 71.72] ( weights/linknet_crop-1024_800epoch .pth) |
147
- | LiteSeg | MobileNetv2 | 4.38 / 4.29 | 117 | 70.0 / 67.8| [ 75.72] ( weights/liteseg_crop-1024_800epoch .pth) |
148
- | MiniNet | None | 3.1 / 1.41 | 254 | n.a. / 40.7| [ 61.59] ( weights/mininet_crop-1024_800epoch .pth) |
149
- | MiniNetv2 | None | 0.5 / 0.51 | 86 | n.a. / 70.5| [ 71.79] ( weights/mininetv2_crop-1024_800epoch .pth) |
150
- | PP-LiteSeg | STDC1 | n.a. / 6.33 | 201 | 76.0 / 74.9| [ 72.49] ( weights/ppliteseg_stdc1_crop-1024_800epoch .pth) |
151
- | PP-LiteSeg | STDC2 | n.a. / 10.56 | 136 | 78.2 / 77.5| [ 74.37] ( weights/ppliteseg_stdc2_crop-1024_800epoch .pth) |
152
- | SegNet | None | 29.46 / 29.48 | 14 | n.a. / 56.1| [ 70.77] ( weights/segnet_crop-1024_800epoch.zip.001 ) |
153
- | ShelfNet | ResNet18 | 23.5 / 16.04 | 110 | n.a. / 74.8| [ 77.63] ( weights/shelfnet_crop-1024_800epoch .pth) |
154
- | SQNet | SqueezeNet-1.1 | n.a. / 4.81 | 69 | n.a. / 59.8| [ 69.55] ( weights/sqnet_crop-1024_800epoch .pth) |
155
- | SwiftNet | ResNet18 | 11.8 / 11.95 | 141 | 75.4 / 75.5| [ 75.43] ( weights/swiftnet_crop-1024_800epoch .pth) |
122
+ | ADSCNet | None | n.a. / 0.51 | 89 | n.a. / 67.5 | [ 69.06] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/adscnet .pth) |
123
+ | AGLNet | None | 1.12 / 1.02 | 61 | 69.39 / 70.1 | [ 73.58] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/aglnet .pth) |
124
+ | BiSeNetv1 | ResNet18 | 49.0 / 13.32 | 88 | 74.8 / 74.7 | [ 74.91] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/bisenetv1 .pth) |
125
+ | BiSeNetv2 | None | n.a. / 2.53 | 142 | 73.4 / 72.6 | [ 73.73<sup >3</sup >] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/bisenetv2-aux .pth) |
126
+ | CANet | MobileNetv2 | 4.8 / 4.77 | 76 | 73.4 / 73.5 | [ 73.76] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/canet .pth) |
127
+ | CFPNet | None | 0.55 / 0.27 | 64 | n.a. / 70.1 | [ 70.08] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/cfpnet .pth) |
128
+ | CGNet | None | 0.41 / 0.24 | 157 | 59.7 / 64.8<sup >4</sup > | [ 67.25] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/cgnet .pth) |
129
+ | ContextNet | None | 0.85 / 1.01 | 80 | 65.9 / 66.1 | [ 66.61] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/contextnet .pth) |
130
+ | DABNet | None | 0.76 / 0.75 | 140 | n.a. / 70.1 | [ 70.78] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/dabnet .pth) |
131
+ | DDRNet | None | 5.7 / 5.54 | 233 | 77.8 / 77.4 | [ 74.34] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/ ddrnet-23-slim .pth) |
132
+ | DFANet | XceptionA | 7.8 / 3.05 | 60 | 71.9 / 71.3 | [ 65.28] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/dfanet-a .pth) |
133
+ | EDANet | None | 0.68 / 0.69 | 125 | n.a. / 67.3 | [ 70.76] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/edanet .pth) |
134
+ | ENet | None | 0.37 / 0.37 | 140 | n.a. / 58.3 | [ 71.31] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/enet .pth) |
135
+ | ERFNet | None | 2.06 / 2.07 | 60 | 70.0 / 68.0 | [ 76.00] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/erfnet .pth) |
136
+ | ESNet | None | 1.66 / 1.66 | 66 | n.a. / 70.7 | [ 71.82] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/esnet .pth) |
137
+ | ESPNet | None | 0.36 / 0.38 | 111 | n.a. / 60.3 | [ 66.39] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/espnet .pth) |
138
+ | ESPNetv2 | None | 1.25 / 0.86 | 101 | 66.4 / 66.2 | [ 70.35] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/espnetv2 .pth) |
139
+ | FarseeNet | ResNet18 | n.a. / 16.75 | 130 | 73.5 / 70.2 | [ 77.35] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/farseenet .pth) |
140
+ | FastSCNN | None | 1.11 / 1.02 | 358 | 68.6 / 68.0 | [ 69.37] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/fastscnn .pth) |
141
+ | FDDWNet | None | 0.80 / 0.77 | 51 | n.a. / 71.5 | [ 75.86] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/fddwnet .pth) |
142
+ | FPENet | None | 0.38 / 0.36 | 90 | n.a. / 70.1 | [ 72.05] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/fpenet .pth) |
143
+ | FSSNet | None | 0.2 / 0.20 | 121 | n.a. / 58.8 | [ 65.44] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/fssnet .pth) |
144
+ | ICNet | ResNet18 | 26.5<sup >5</sup > / 12.42 | 102 | 67.7<sup >5</sup > / 69.5<sup >5</sup > | [ 69.65] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/icnet .pth) |
145
+ | LEDNet | None | 0.94 / 1.46 | 76 | n.a. / 70.6 | [ 71.40] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/lednet .pth) |
146
+ | LinkNet | None | 11.5 / 11.71 | 145 | n.a. / 76.4| [ 71.72] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/linknet .pth) |
147
+ | LiteSeg | MobileNetv2 | 4.38 / 4.29 | 117 | 70.0 / 67.8| [ 75.72] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/liteseg .pth) |
148
+ | MiniNet | None | 3.1 / 1.41 | 254 | n.a. / 40.7| [ 61.59] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/mininet .pth) |
149
+ | MiniNetv2 | None | 0.5 / 0.51 | 86 | n.a. / 70.5| [ 71.79] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/mininetv2 .pth) |
150
+ | PP-LiteSeg | STDC1 | n.a. / 6.33 | 201 | 76.0 / 74.9| [ 72.49] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/ppliteseg_stdc1 .pth) |
151
+ | PP-LiteSeg | STDC2 | n.a. / 10.56 | 136 | 78.2 / 77.5| [ 74.37] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/ppliteseg_stdc2 .pth) |
152
+ | SegNet | None | 29.46 / 29.48 | 14 | n.a. / 56.1| [ 70.77] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/segnet.pth ) |
153
+ | ShelfNet | ResNet18 | 23.5 / 16.04 | 110 | n.a. / 74.8| [ 77.63] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/shelfnet .pth) |
154
+ | SQNet | SqueezeNet-1.1 | n.a. / 4.81 | 69 | n.a. / 59.8| [ 69.55] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/sqnet .pth) |
155
+ | SwiftNet | ResNet18 | 11.8 / 11.95 | 141 | 75.4 / 75.5| [ 75.43] ( https://github.com/zh320/realtime-semantic-segmentation-pytorch/releases/download/v1.0/swiftnet .pth) |
156
156
157
157
[ <sup >1</sup >FPSs are evaluated on RTX 2080 at resolution 1024x512 using this [ script] ( tools/test_speed.py )]
158
158
[ <sup >2</sup >These results are obtained by training 800 epochs with crop-size 1024x1024]
0 commit comments