Skip to content

AdilShamim8/GenAI-Roadmap-with-Notes-Using-LangChain

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

28 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

GenAI Roadmap with Notes Using LangChain

GitHub stars GitHub forks GitHub last commit License

A comprehensive roadmap and resource collection for learning Generative AI with practical implementation using LangChain. This repository serves as a guided journey from basic concepts to advanced applications in the generative AI space.

πŸ“‹ Table of Contents

πŸ” Overview

This repository provides a structured learning path for developers interested in Generative AI with a focus on practical implementation using LangChain. It contains curated notes, code examples, and implementation guides to help you progress from foundational concepts to building sophisticated GenAI applications.

πŸ›£οΈ GenAI Roadmap

1. Foundations (2-4 weeks)

  • Machine Learning Basics

    • Supervised vs. Unsupervised Learning
    • Neural Networks Fundamentals
    • Training and Evaluation Metrics
  • NLP Fundamentals

    • Text Processing Techniques
    • Word Embeddings
    • Language Models Basics
  • Deep Learning for NLP

    • RNNs, LSTMs, and GRUs
    • Attention Mechanisms
    • Transformers Architecture

2. Generative AI Models (4-6 weeks)

  • Transformer-Based Models

    • BERT, GPT Family (GPT-2, GPT-3, GPT-4)
    • T5, BART
  • Multimodal Models

    • CLIP, DALL-E
    • Stable Diffusion
    • Multimodal Transformers
  • Fine-tuning Strategies

    • Transfer Learning
    • Prompt Engineering
    • PEFT (Parameter-Efficient Fine-Tuning)
    • RLHF (Reinforcement Learning from Human Feedback)

3. LangChain Mastery (3-5 weeks)

  • LangChain Basics

    • Components and Architecture
    • Chains and Agents
    • Memory Types
  • Prompt Engineering with LangChain

    • Template Creation
    • Few-shot Learning
    • Chain of Thought Prompting
  • Advanced LangChain Features

    • Document Loading and Splitting
    • Vector Stores and Embeddings
    • Retrieval Augmented Generation (RAG)
    • Tool and API Integration

4. Applied GenAI Projects (4-8 weeks)

  • Building Conversational Agents

    • Chatbots and Virtual Assistants
    • Task-specific Agents
  • Content Generation Systems

    • Text Summarization
    • Creative Writing Assistants
    • Code Generation
  • Information Retrieval & Knowledge Systems

    • Question Answering
    • Knowledge Base Construction
    • Document Analysis

5. Production and Deployment (2-4 weeks)

  • Model Optimization

    • Quantization
    • Distillation
    • Inference Optimization
  • Deployment Strategies

    • API Development
    • Containerization
    • Serverless Deployment
  • Monitoring and Maintenance

    • Performance Metrics
    • Drift Detection
    • Continuous Improvement

πŸ”— LangChain Integration

LangChain provides a framework for developing applications powered by language models. This repository demonstrates how to leverage LangChain for:

  • Building Complex Reasoning Chains
  • Creating Domain-Specific Chatbots
  • Implementing Retrieval-Augmented Generation (RAG)
  • Developing Autonomous Agents
  • Connecting LLMs to External Tools and APIs

πŸ“š Top Resources

Official Documentation

Books

  • "Building LLM Powered Applications" by Simon Willison
  • "Natural Language Processing with Transformers" by Lewis Tunstall, Leandro von Werra, and Thomas Wolf
  • "Generative Deep Learning" by David Foster
  • "Transformers for Natural Language Processing" by Denis Rothman

Courses

Tutorials and Articles

YouTube Channels

Research Papers

πŸš€ Getting Started

Prerequisites

  • Python 3.8 or higher
  • pip (Python package manager)

Installation

  1. Clone this repository:
git clone https://github.com/AdilShamim8/GenAI-Roadmap-with-Notes-Using-LangChain.git
cd GenAI-Roadmap-with-Notes-Using-LangChain
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install required packages:
pip install -r requirements.txt
  1. Set up environment variables:
# Create a .env file with your API keys
echo "OPENAI_API_KEY=your_openai_api_key" > .env

πŸ“‚ Project Structure

GenAI-Roadmap-with-Notes-Using-LangChain/
β”œβ”€β”€ foundations/                # Basic concepts and foundational knowledge
β”‚   β”œβ”€β”€ nlp_basics/            # NLP fundamentals
β”‚   β”œβ”€β”€ transformers/          # Transformer architecture notes
β”‚   └── llm_concepts/          # LLM theory and concepts
β”œβ”€β”€ langchain_basics/          # Introduction to LangChain
β”‚   β”œβ”€β”€ components/            # Core components of LangChain
β”‚   β”œβ”€β”€ chains/                # Building and using chains
β”‚   └── memory/                # Working with different memory types
β”œβ”€β”€ advanced_techniques/       # Advanced LangChain implementations
β”‚   β”œβ”€β”€ rag/                   # Retrieval Augmented Generation
β”‚   β”œβ”€β”€ agents/                # Building autonomous agents
β”‚   └── fine_tuning/           # Fine-tuning techniques
β”œβ”€β”€ projects/                  # Complete project implementations
β”‚   β”œβ”€β”€ chatbot/               # Conversational agent examples
β”‚   β”œβ”€β”€ document_qa/           # Document Q&A system
β”‚   └── content_generator/     # Text generation applications
β”œβ”€β”€ deployment/                # Deployment guides and examples
β”‚   β”œβ”€β”€ api_setup/             # Setting up APIs
β”‚   β”œβ”€β”€ optimization/          # Model optimization techniques
β”‚   └── monitoring/            # System monitoring
β”œβ”€β”€ resources/                 # Additional learning resources
β”œβ”€β”€ notebooks/                 # Jupyter notebooks with examples
β”œβ”€β”€ requirements.txt           # Project dependencies
β”œβ”€β”€ .env.example               # Example environment variables
└── README.md                  # This documentation

πŸ§ͺ Examples

Basic LangChain Chain

from langchain.llms import OpenAI
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate

# Initialize the LLM
llm = OpenAI(temperature=0.7)

# Create a prompt template
prompt = PromptTemplate(
    input_variables=["topic"],
    template="Write a short paragraph about {topic}."
)

# Create a chain
chain = LLMChain(llm=llm, prompt=prompt)

# Run the chain
result = chain.run("artificial intelligence")
print(result)

Simple RAG Implementation

from langchain.document_loaders import TextLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI

# Load document
loader = TextLoader("path/to/document.txt")
documents = loader.load()

# Split text into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)

# Create embeddings and vector store
embeddings = OpenAIEmbeddings()
db = Chroma.from_documents(texts, embeddings)

# Create a retrieval chain
qa_chain = RetrievalQA.from_chain_type(
    llm=OpenAI(),
    chain_type="stuff",
    retriever=db.as_retriever()
)

# Query the system
query = "What are the key points in this document?"
response = qa_chain.run(query)
print(response)

Check the notebooks/ directory for more complete examples and tutorials.

πŸ‘₯ Contributing

Contributions are welcome! If you'd like to add to this roadmap, improve existing content, or share your implementations:

  1. Fork the repository
  2. Create a new branch (git checkout -b feature/your-feature)
  3. Commit your changes (git commit -m 'Add some feature')
  4. Push to the branch (git push origin feature/your-feature)
  5. Open a Pull Request

Please see CONTRIBUTING.md for detailed guidelines.

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


Made with ❀️ by Adil Shamim

Last updated: July 2025

About

A comprehensive learning path and practical guide for Generative AI development with hands-on LangChain implementations and detailed notes.

Topics

Resources

License

Contributing

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published