- 
Install requirements. # Download wget https://github.com/airockchip/rknn-toolkit2/raw/v2.1.0/rknn-toolkit2/packages/requirements_cp310-2.1.0.txt # Install pip install -r requirements_cp310-2.1.0.txt
- 
Install whls for rknn-toolkit2. # Download wget https://github.com/airockchip/rknn-toolkit2/raw/v2.1.0/rknn-toolkit2/packages/rknn_toolkit2-2.1.0+708089d1-cp310-cp310-linux_x86_64.whl # Install pip install rknn_toolkit2-2.1.0+708089d1-cp310-cp310-linux_x86_64.whl
- 
Install ultralytics_yolov8 special for converting pt -> onnx (optimized for rknn). # Clone repo git clone https://github.com/airockchip/ultralytics_yolov8 # Go to cloned directory cd ultralytics_yolov8 # Install as package python setup.py install
- Convert pt to onnx.
from ultralytics import YOLO model = YOLO("yolov8.pt") path = model.export(format="rknn") # Internal method written by airockchip, don't be fooled by the format name
1.5 Check the input size when exporting the model. If necessary, change batch_size parameter in ultralytics/cfg/default.yaml to any value.
- Convert onnx to rknn.
# Clone repo git clone https://github.com/airockchip/rknn_model_zoo # Go to directory with converter cd rknn_model_zoo/examples/yolov8/python # Run converter python convert.py <path-to-onnx-model>/yolov8n.onnx rk3588 i8 ../model/yolov8n.rknn
2.5 If the model has issues or warnings in convertation process, you can change opset version from 12 to 17 or 19, depending on PyTorch version. Currently, RKNN==2.1.0 recommends opset 19.
- Save and send it to Orange Pi.
- 
Download image: Ubuntu (OrangePi 5) Ubuntu (OrangePi 5B) Armbian (OrangePi 5/5B) 
- 
Burn it to SD card. 
- 
Plug SD card to Orange Pi. 
- 
Update librknnrt.so. # Download wget https://github.com/airockchip/rknn-toolkit2/raw/v2.1.0/rknpu2/runtime/Linux/librknn_api/aarch64/librknnrt.so # Move to /usr/lib sudo mv ./librknnrt.so /usr/lib
- 
Install whls for rknn-toolkit-lite2. # Download wget https://github.com/airockchip/rknn-toolkit2/raw/v2.1.0/rknn-toolkit-lite2/packages/rknn_toolkit_lite2-2.1.0-cp310-cp310-linux_aarch64.whl # Install pip install rknn_toolkit_lite2-2.1.0-cp310-cp310-linux_aarch64.whl
- 
Install opencv-python and other requirements (if necessary). pip install opencv-python
- 
Move rknn model to models directory. 
- 
Change path to model in main.py. 
- 
Run main.py. python main.py