Skip to content
Open
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
211 changes: 211 additions & 0 deletions scope-docs/ecosystem_roadmap.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,211 @@
# Recodeflow Metadata Ecosystem Roadmap

## Purpose
This document captures future planning and ecosystem development ideas for the recodeflow metadata system. It serves as a lessons-learned repository and planning document for metadata architecture evolution.

## Context
This roadmap emerged from work on PR #70 and extensive experience with Claude Code automation reducing variable harmonization work by ~90%. The current three-file architecture (metadata_registry.yaml, variables.yaml, variable_details.yaml) addresses immediate needs while positioning for future growth.

## Current State (2025-Q2)

### Implemented Components
- **Core schemas**: variables.yaml and variable_details.yaml for CSV validation
- **Central registry**: Shared specifications to eliminate duplication (DRY principle)
- **Extension system**: Template variables for workflow efficiency
- **AI-friendly documentation**: Clear structure that prevents Claude Code stumbles

### Proven Patterns
- **Task-specific file usage**: Registry for validation, schemas for layout assessment
- **Progressive documentation**: Over-documentation prevents AI errors, reduces human effort
- **Cross-file references**: Clear separation with explicit coordination

## Future Development Areas

### Database Metadata System
**Status**: Conceptual (discussed in PR #65, #43)

**Vision**: Dublin Core compliant dataset-level metadata
- **Purpose**: Dataset documentation, cataloging, and provenance tracking
- **Standard**: Dublin Core with DCAT extensions
- **Implementation**: YAML sidecar files alongside data
- **Integration**: Automated data dictionary generation, rec_with_table() metadata

**Fields identified**:
- title, description, creator, publisher, subject
- date_created, date_modified, version, license, contact_point

**Implementation approach**:
- Functions: set_catalog(), get_catalog(), print.catalog(), summary.catalog()
- CSV import/export support for non-R users
- Flexible, modular metadata management

### Extension Framework Evolution

**Current**: Single extension (templateVariable) with ad-hoc documentation
**Future**: Systematic extension categories and management

#### Extension Categories (Proposed)
1. **Workflow Efficiency**
- Template variables (implemented)
- Batch transformation patterns
- Variable inheritance systems

2. **Data Integration**
- Complex source integration patterns
- Multi-database harmonization rules
- External system connectors

3. **Validation Enhancement**
- Advanced data quality rules
- Cross-field validation logic
- Business rule enforcement

4. **Project Management**
- Collaboration workflow support
- Version control integration
- Review and approval systems

#### Extension Placement Framework
**Decision criteria for new extensions**:
- **variables.csv**: Extensions affecting variable-level metadata, definitions, cross-variable relationships
- **variable_details.csv**: Extensions affecting transformation rules, value mappings, row-level processing
- **Both files**: Extensions requiring coordination between variable definitions and transformations

### Project-Specific Extensions

**Current examples**:
- **cchsflow**: CCHS database patterns, health survey subjects, survey section categories
- **raiflow**: RAI assessment patterns, care classifications

**Future pattern**:
- Core schema compatibility maintained across all projects
- Domain-specific enumerations and validation rules
- Shared template patterns across projects
- Extension inheritance model (never remove core rules, only add)

### Validation System Evolution

#### Current Implementation
- **Basic mode**: Minimal validation for Excel-first researchers
- **Full mode**: Comprehensive validation for automated processing
- **Progressive validation**: Support different technical comfort levels

#### Future Enhancements
- **Cross-file validation**: Consistency checking between variables and variable_details
- **Template system validation**: Inheritance and reference validation
- **Real-time validation**: Integration with editing tools
- **Semantic validation**: Business logic beyond field constraints

### AI Collaboration Optimization

#### Lessons Learned
- **Clear documentation prevents AI errors**: Structure matters more than brevity
- **Examples accelerate understanding**: Concrete patterns > abstract descriptions
- **Reference relationships**: Cross-file coordination reduces confusion
- **Progressive complexity**: Start simple, add complexity as needed

#### Future AI Integration
- **Schema-driven code generation**: Automated CSV reading/writing functions
- **Validation tool generation**: Auto-generate validation functions from schemas
- **Documentation automation**: Generate user guides from schema definitions
- **Pattern recognition**: AI-assisted extension development

## Architecture Decisions

### Three-File Approach: Validated
**Registry-first workflow** positions users well for both human and AI collaboration:
1. **Context before details**: Registry provides ecosystem understanding
2. **Task-specific entry points**: Validation, layout assessment, extension discovery
3. **Flexible consumption**: Users access what they need when they need it

### DRY Implementation: Successful
**Shared specifications eliminate duplication without over-engineering**:
- CSV format, validation patterns, tier system centralized
- Individual schemas focus on field definitions
- Clear cross-references prevent maintenance issues

### Extension Strategy: Evolving
**Template variables prove the extension concept**:
- Workflow efficiency gains demonstrated
- Clear placement criteria established
- Foundation for systematic extension development

## Implementation Priorities

### Short Term (Next 6 months)
1. **Complete database metadata implementation**
- Define database_metadata.yaml schema
- Implement basic catalog functions
- Integration with existing workflows

2. **Extension documentation enhancement**
- Template variable usage guide
- Extension development guidelines
- Clear examples and patterns

3. **Validation tool optimization**
- Performance testing with large datasets
- User experience refinement
- Error message improvement

### Medium Term (6-18 months)
1. **Advanced extension categories**
- Data integration patterns
- Validation enhancement framework
- Project management features

2. **Cross-project standardization**
- Shared extension patterns
- Compatibility testing
- Migration tools

3. **AI integration expansion**
- Schema-driven automation
- Pattern recognition tools
- Documentation generation

### Long Term (18+ months)
1. **Ecosystem standardization**
- Industry adoption patterns
- Standards body engagement
- Interoperability frameworks

2. **Advanced collaboration features**
- Multi-user workflows
- Version control integration
- Review and approval systems

## Success Metrics

### Current Measures
- **AI productivity**: 90% reduction in variable harmonization effort (achieved)
- **Documentation clarity**: Reduced Claude Code errors (achieved)
- **DRY compliance**: Eliminated specification duplication (achieved)

### Future Measures
- **Extension adoption**: Number of active extensions across projects
- **Cross-project compatibility**: Successful schema sharing between projects
- **User productivity**: Time reduction in metadata creation and validation
- **System reliability**: Reduced validation errors and data quality issues

## Risk Management

### Technical Risks
- **Complexity creep**: Monitor abstraction levels, maintain user focus
- **Performance impact**: Three-file reading overhead vs. single-file simplicity
- **Maintenance burden**: Cross-file consistency requirements

### Adoption Risks
- **User confusion**: Three-file system vs. familiar single-file approach
- **Tool compatibility**: Validation tools may need significant updates
- **Migration effort**: Existing projects require schema updates

### Mitigation Strategies
- **Incremental rollout**: Gradual introduction of new features
- **Backwards compatibility**: Maintain support for existing patterns
- **Clear documentation**: Comprehensive guides and examples
- **User feedback loops**: Regular assessment of pain points and benefits

---

*This roadmap will be updated quarterly based on implementation experience and user feedback.*
Loading