Skip to content

Galactic-Code-Developers/Chaos-CG-Model

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Coherence-Gradient Chaos Model — Reproducibility Package

Python Version License: MIT Tests Zenodo

This repository contains minimal, self-contained code to explore the coherence-gradient chaos framework introduced in:

Valamontes, A., Chaos as a Coherence–Gradient Phenomenon:
A DLSFH–SGCV–MC Analysis
(manuscript).

The goal is to provide a concrete numerical playground for the model-dependent results discussed in the paper, including:

  • The linearized ∞–tensor propagator $\mathcal{T}_{\infty}$.
  • The spectral-radius / operator-norm instability criterion.
  • The three-node VID chain example.
  • Numerical estimation of the coherence-gradient Lyapunov exponent $\lambda_{\mathrm{CG}}$.
  • Simple experiments linking VID-like circulation parameters to divergence rates.

The code is intentionally lightweight and readable, intended as a starting point for more elaborate DLSFH/VID simulations.


1. Installation

Create and activate a fresh environment (conda or venv recommended), then install dependencies from requirements.txt:

pip install -r requirements.txt

Core dependencies:

  • numpy — core linear algebra
  • scipy — optional (spectral radius, stability checks)
  • matplotlib — plotting
  • networkx — optional lattice/graph tooling

2. Repository Structure

chaos_cg_model/
  README.md               # This file
  requirements.txt        # Python dependencies

  src/
    cg_model.py           # Core coherence-gradient model + utilities
    example_three_node.py # Reproduces the 3-node VID chain from the paper
    vid_lattice_demo.py   # Skeleton for DLSFH-like lattice experiments

  tests/
    test_divergence.py
    test_operator_norm.py
    test_lyapunov_coarse.py

  notebooks/
    chaos_three_vertex.ipynb
    vid_circulation_instability.ipynb

All scripts correspond directly to sections of the manuscript (see Appendix A).


3. Quickstart: Three-Node VID Chain

To reproduce the three-node VID chain analyzed in the paper:

cd chaos_cg_model
python -m src.example_three_node

This script:

  1. Constructs the 3×3 propagator $\mathcal{T}_{\infty}^{(3)}$
    using parameters (eta, alpha, beta).
  2. Evolves two nearby coherence configurations for N steps.
  3. Computes the distance trajectory
    $D_n = | \Psi_n - \Psi'_n |$.
  4. Fits $\lambda_{\mathrm{CG}}$ from a linear regression of log(D_n) vs n.
  5. Compares against the model expectation
    $\log(1+\eta)$.

If matplotlib is installed, diagnostic plots are also generated.


4. Core Concept: Coherence-Gradient Chaos

The numerical model implements these ideas:

  • Evolution of a discrete coherence field represented by
    $\Psi_t \in \mathbb{R}^N$.
  • A linearized update rule
    $\Psi_{t+1} = \mathcal{T}_{\infty} \Psi_t$.
  • A coherence-gradient Lyapunov exponent $\lambda_{\mathrm{CG}}$ defined by
    exponential growth of distances between nearby states.
  • Instability driven by anisotropies in a coherence-gradient field.
  • Theoretical linkage to VID loop circulation.

The code does not attempt full DLSFH or SGCV physics — it reproduces only the mathematical instability structure used in the manuscript.


5. Extending the Experiments

Several natural directions for extending this package:

  • Replace the 3×3 matrix with larger propagators modeling full VID subgraphs.
  • Examine how “circulation parameters’’ in vid_lattice_demo.py influence
    $\lambda_{\mathrm{CG}}$.
  • Introduce explicit dependence of $\mathcal{T}_{\infty}$
    • on a discrete coherence-gradient field $G_{ab}(v)$.
  • Perform parameter scans over $(\eta,\alpha,\beta)$ to map regions where
    $\rho(\mathcal{T}_{\infty}) > 1$.
  • Compare operator-norm growth with numerically extracted Lyapunov exponents.

These experiments mirror the interpretive structure of the manuscript.


6. Reproducibility Notes

  • All randomness uses fixed seeds.
  • No external data files required.
  • Every experiment runs in < 1.5 seconds on a modern laptop.
  • Each numerical claim in the paper corresponds to a test or notebook:
Manuscript Section Numerical Validation
Definition 1 (Divergence) tests/test_divergence.py
Proposition 1 (Operator Norm) tests/test_operator_norm.py
VID Circulation Instability notebooks/vid_circulation_instability.ipynb
Three-Node Example src/example_three_node.py
Coarse-Grained Lyapunov Matching tests/test_lyapunov_coarse.py

See TESTS.md for details.


7. Citation

If you use this package, please cite:

Valamontes, A., Chaos as a Coherence–Gradient Phenomenon:
A DLSFH–SGCV–MC Analysis
(manuscript).