Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 14 additions & 18 deletions Notebooks/Chapter 4.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -178,11 +178,11 @@
"df_no = df[df.default2 == 0].sample(frac=0.15)\n",
"# Take all samples where target value is 'yes'\n",
"df_yes = df[df.default2 == 1]\n",
"df_ = df_no.append(df_yes)\n",
"df_ = df.concat([df_yes, df_no])\n",
"\n",
"ax1.scatter(df_[df_.default == 'Yes'].balance, df_[df_.default == 'Yes'].income, s=40, c='orange', marker='+',\n",
" linewidths=1)\n",
"ax1.scatter(df_[df_.default == 'No'].balance, df_[df_.default == 'No'].income, s=40, marker='o', linewidths='1',\n",
"ax1.scatter(df_[df_.default == 'No'].balance, df_[df_.default == 'No'].income, s=40, marker='o', linewidths=1,\n",
" edgecolors='lightblue', facecolors='white', alpha=.6)\n",
"\n",
"ax1.set_ylim(ymin=0)\n",
Expand Down Expand Up @@ -228,7 +228,7 @@
"# and predicted classification.\n",
"X_test = np.arange(df.balance.min(), df.balance.max()).reshape(-1,1)\n",
"\n",
"clf = skl_lm.LogisticRegression(solver='newton-cg')\n",
"clf = skl_lm.LogisticRegression(solver='lbfgs')\n",
"clf.fit(X_train,y)\n",
"prob = clf.predict_proba(X_test)\n",
"\n",
Expand Down Expand Up @@ -297,7 +297,7 @@
"source": [
"# Using newton-cg solver, the coefficients are equal/closest to the ones in the book. \n",
"# I do not know the details on the differences between the solvers.\n",
"clf = skl_lm.LogisticRegression(solver='newton-cg')\n",
"clf = skl_lm.LogisticRegression(solver='lbfgs')\n",
"X_train = df.balance.values.reshape(-1,1)\n",
"clf.fit(X_train,y)\n",
"print(clf)\n",
Expand Down Expand Up @@ -391,8 +391,7 @@
}
],
"source": [
"X_train = sm.add_constant(df.balance)\n",
"est = smf.Logit(y.ravel(), X_train).fit()\n",
"est = smf.logit(formula='default2 ~ 1 + balance', data=df).fit()\n",
"est.summary2().tables[1]"
]
},
Expand Down Expand Up @@ -481,10 +480,8 @@
}
],
"source": [
"X_train = sm.add_constant(df.student2)\n",
"y = df.default2\n",
"\n",
"est = smf.Logit(y, X_train).fit()\n",
"est = smf.logit(formula='default2 ~ 1 + student2', data=df).fit()\n",
"est.summary2().tables[1]"
]
},
Expand Down Expand Up @@ -593,8 +590,7 @@
}
],
"source": [
"X_train = sm.add_constant(df[['balance', 'income', 'student2']])\n",
"est = smf.Logit(y, X_train).fit()\n",
"est = smf.logit(formula='default2 ~ 1 + student2', data=df).fit()\n",
"est.summary2().tables[1]"
]
},
Expand Down Expand Up @@ -622,8 +618,8 @@
"# Vector with balance values for plotting\n",
"X_test = np.arange(df.balance.min(), df.balance.max()).reshape(-1,1)\n",
"\n",
"clf = skl_lm.LogisticRegression(solver='newton-cg')\n",
"clf2 = skl_lm.LogisticRegression(solver='newton-cg')\n",
"clf = skl_lm.LogisticRegression(solver='lbfgs')\n",
"clf2 = skl_lm.LogisticRegression(solver='lbfgs')\n",
"\n",
"clf.fit(X_train,y)\n",
"clf2.fit(X_train2,y2)\n",
Expand Down Expand Up @@ -734,7 +730,7 @@
"ax1.legend(loc=2)\n",
"\n",
"# Right plot\n",
"sns.boxplot('student', 'balance', data=df, orient='v', ax=ax2, palette=c_palette);"
"sns.boxplot(x='student', y='balance', data=df, orient='v', ax=ax2, palette=c_palette);"
]
},
{
Expand Down Expand Up @@ -808,8 +804,8 @@
}
],
"source": [
"X = df[['balance', 'income', 'student2']].as_matrix()\n",
"y = df.default2.as_matrix()\n",
"X = df[['balance', 'income', 'student2']].values\n",
"y = df.default2.values\n",
"\n",
"lda = LinearDiscriminantAnalysis(solver='svd')\n",
"y_pred = lda.fit(X, y).predict(X)\n",
Expand Down Expand Up @@ -1310,8 +1306,8 @@
"X_test = X_scaled[:1000,:]\n",
"y_test = y[:1000]\n",
"\n",
"def KNN(n_neighbors=1, weights='uniform'):\n",
" clf = neighbors.KNeighborsClassifier(n_neighbors, weights)\n",
"def KNN(n_neighbors=1,):\n",
" clf = neighbors.KNeighborsClassifier(n_neighbors, weights = 'uniform')\n",
" clf.fit(X_train, y_train)\n",
" pred = clf.predict(X_test)\n",
" score = clf.score(X_test, y_test)\n",
Expand Down