@@ -700,7 +700,7 @@ function magnetic_pendulum(u = [sincos(0.12553*2π)..., 0, 0];
700700    γ =  1.0 , d =  0.3 , α =  0.2 , ω =  0.5 , N =  3 , γs =  fill (γ, N))
701701    m =  MagneticPendulum ([SVector (cos (2 π* i/ N), sin (2 π* i/ N)) for  i in  1 : N])
702702    p =  MagneticPendulumParams (γs, d, α, ω)
703-     return  ContinuousDynamicalSystem (m, u, p)
703+     return  CoupledODEs (m, u, p)
704704end 
705705
706706""" 
@@ -716,7 +716,7 @@ Famous excitable system which emulates the firing of a neuron, with rule
716716More details in the [Scholarpedia](http://www.scholarpedia.org/article/FitzHugh-Nagumo_model) entry. 
717717""" 
718718function  fitzhugh_nagumo (u =  0.5 ones (2 ); a= 3.0 , b= 0.2 , ε= 0.01 , I= 0.0 )
719-     ds =  ContinuousDynamicalSystem (fitzhugh_nagumo_rule, u, [a, b, ε, I])
719+     ds =  CoupledODEs (fitzhugh_nagumo_rule, u, [a, b, ε, I])
720720end 
721721function  fitzhugh_nagumo_rule (x, p, t)
722722    u, w =  x
@@ -741,7 +741,7 @@ It is noteworthy because its strange attractor is multifractal with fractal dime
741741    Chaos Theory and Applications 2(2),1-3, 2020 
742742""" 
743743more_chaos_example (u =  [0.0246 , 0.79752 , 0.3535866 ]) = 
744- ContinuousDynamicalSystem (more_chaos_rule, u, nothing )
744+ CoupledODEs (more_chaos_rule, u, nothing )
745745function  more_chaos_rule (u, p, t)
746746    x, y, z =  u
747747    dx =  y
@@ -772,8 +772,8 @@ See discussion in Section 4.4.3 of "Elegant Chaos" by J. C. Sprott.
772772    Thomas, R. (1999). *International Journal of Bifurcation and Chaos*, 
773773    *9*(10), 1889-1905. 
774774""" 
775- thomas_cyclical (u0 =  [1.0 , 0 , 0 ]; b =  0.2 ) =  ContinuousDynamicalSystem (thomas_rule, u0, [b])
776- labyrinth (u0 =  [1.0 , 0 , 0 ]) =  ContinuousDynamicalSystem (thomas_rule, u0, [0.0 ])
775+ thomas_cyclical (u0 =  [1.0 , 0 , 0 ]; b =  0.2 ) =  CoupledODEs (thomas_rule, u0, [b])
776+ labyrinth (u0 =  [1.0 , 0 , 0 ]) =  CoupledODEs (thomas_rule, u0, [0.0 ])
777777
778778function  thomas_rule (u, p, t)
779779    x,y,z =  u
@@ -805,7 +805,7 @@ between the boxes (polar and equatorial ocean basins) and ``\\eta_i`` are parame
805805    Stommel, Thermohaline convection with two stable regimes of flow. Tellus, 13(2) 
806806""" 
807807function  stommel_thermohaline (u =  [0.3 , 0.2 ]; η1 =  3.0 , η2 =  1 , η3 =  0.3 )
808-     ds =  ContinuousDynamicalSystem (stommel_thermohaline_rule, u, [η1, η2, η3],
808+     ds =  CoupledODEs (stommel_thermohaline_rule, u, [η1, η2, η3],
809809    stommel_thermohaline_jacob)
810810end 
811811function  stommel_thermohaline_rule (x, p, t)
@@ -854,7 +854,7 @@ bsn, att = basins_of_attraction((xg, yg, zg), ds; mx_chk_att=4)
854854    Lorenz-84 low-order atmospheric circulation model, Chaos 18, 033121 (2008) 
855855""" 
856856function  lorenz84 (u =  [0.1 , 0.1 , 0.1 ]; F= 6.846 , G= 1.287 , a= 0.25 , b= 4.0 )
857-     return  ContinuousDynamicalSystem (lorenz84_rule, u, [F, G, a, b])
857+     return  CoupledODEs (lorenz84_rule, u, [F, G, a, b])
858858end 
859859@inline  @inbounds  function  lorenz84_rule (u, p, t)
860860    F, G, a, b =  p
@@ -901,7 +901,7 @@ bsn, att = basins_of_attraction((xg, yg), pmap)
901901    Int. Jour. Bifurcation and Chaos 24, 1450009 (2014) 
902902""" 
903903function  lorenzdl (u =  [0.1 , 0.1 , 0.1 ]; R= 4.7 )
904-     return  ContinuousDynamicalSystem (lorenzdl_rule, u, R,
904+     return  CoupledODEs (lorenzdl_rule, u, R,
905905    lorenzdl_rule_jacob)
906906end 
907907@inline  @inbounds  function  lorenzdl_rule (u, p, t)
@@ -941,7 +941,7 @@ The equations are:
941941function  coupled_roessler (u0= [1 , - 2 , 0 , 0.11 , 0.2 , 0.1 ];
942942    ω1 =  0.18 , ω2 =  0.22 , a =  0.2 , b =  0.2 , c =  5.7 , k1 =  0.115 , k2 =  0.0 )
943943    p =  [ω1, ω2, a, b, c, k1, k2]
944-     return  ContinuousDynamicalSystem (coupled_roessler_f, u0, p)
944+     return  CoupledODEs (coupled_roessler_f, u0, p)
945945end 
946946function  coupled_roessler_f (u,p,t)
947947    ω1, ω2, a, b, c, k1, k2 =  p
@@ -973,7 +973,7 @@ function kuramoto(D = 25, u0 = range(0, 2π; length = D);
973973    K =  0.3 , ω =  range (- 1 , 1 ; length =  D))
974974    p =  KuramotoParams (K, ω)
975975    @warn  " The kuramoto implementation does NOT have a Jacobian function!" 
976-     return  ContinuousDynamicalSystem (kuramoto_f, u0, p, (J,z0, p, n)  ->   nothing )
976+     return  CoupledODEs (kuramoto_f, u0, p)
977977end 
978978using  Statistics:  mean
979979function  kuramoto_f (du, u, p, t)
@@ -1671,7 +1671,7 @@ function multispecies_competition(option = 1)
16711671    p =  CompetitionDynamicsParameters (option)
16721672    N =  size (p. Ks, 2 )
16731673    u0 =  [[0.1  for  i= 1 : N]; [S for  S in  p. Ss]]
1674-     ds =  ContinuousDynamicalSystem (multispecies_competition_rule!, u0, p, (J, x, p, t)  ->   nothing )
1674+     ds =  CoupledODEs (multispecies_competition_rule!, u0, p)
16751675    return  ds
16761676end 
16771677
0 commit comments