1- const DDS = DynamicalSystemsBase. DiscreteDynamicalSystem
2-
31"""
42```julia
53towel(u0 = [0.085, -0.121, 0.075])
@@ -23,7 +21,7 @@ Default values are the ones used in the original paper.
2321[1] : O. E. Rössler, Phys. Lett. **71A**, pp 155 (1979)
2422"""
2523function towel (u0= [0.085 , - 0.121 , 0.075 ])
26- return DDS (towel_rule, u0, nothing )
24+ return DeterministicIteratedMap (towel_rule, u0, nothing )
2725end # should result in lyapunovs: [0.432207,0.378834,-3.74638]
2826function towel_rule (x, p, n)
2927 @inbounds x1, x2, x3 = x[1 ], x[2 ], x[3 ]
@@ -72,7 +70,7 @@ Nuclear Physics, Novosibirsk (1969)
7270[2] : J. M. Greene, J. Math. Phys. **20**, pp 1183 (1979)
7371"""
7472function standardmap (u0= [0.001245 , 0.00875 ]; k = 0.971635 )
75- return DDS (standardmap_rule, u0, [k])
73+ return DeterministicIteratedMap (standardmap_rule, u0, [k])
7674end
7775@inbounds function standardmap_rule (x, par, n)
7876 theta = x[1 ]; p = x[2 ]
@@ -132,7 +130,7 @@ function coupledstandardmaps(M::Int, u0 = 0.001rand(2M);
132130 sparseJ = sparse (J)
133131 p = vcat (ks, Γ)
134132 csm (sparseJ, u0, p, 0 )
135- return DDS (csm, u0, p, csm, sparseJ)
133+ return DeterministicIteratedMap (csm, u0, p, csm, sparseJ)
136134end
137135struct CoupledStandardMaps{N}
138136 idxs:: SVector{N, Int}
@@ -198,7 +196,7 @@ function's documentation string.
198196[1] : M. Hénon, Commun.Math. Phys. **50**, pp 69 (1976)
199197"""
200198function henon (u0= zeros (2 ); a = 1.4 , b = 0.3 )
201- return DDS (henon_rule, u0, [a,b])
199+ return DeterministicIteratedMap (henon_rule, u0, [a,b])
202200end # should give lyapunov exponents [0.4189, -1.6229]
203201henon_rule (x, p, n) = SVector {2} (1.0 - p[1 ]* x[1 ]^ 2 + x[2 ], p[2 ]* x[1 ])
204202henon_jacob (x, p, n) = SMatrix {2,2} (- 2 * p[1 ]* x[1 ], p[2 ], 1.0 , 0.0 )
@@ -226,7 +224,7 @@ function's documentation string.
226224[2] : M. J. Feigenbaum, J. Stat. Phys. **19**, pp 25 (1978)
227225"""
228226function logistic (x0= 0.4 ; r = 4.0 )
229- return DDS (logistic_rule, SVector (x0), [r])
227+ return DeterministicIteratedMap (logistic_rule, SVector (x0), [r])
230228end
231229logistic_rule (x, p, n) = @inbounds SVector (p[1 ]* x[1 ]* (1 - x[1 ]))
232230logistic_jacob (x, p, n) = @inbounds SMatrix {1,1} (p[1 ]* (1 - 2 x[1 ]))
@@ -252,7 +250,7 @@ x_n(1 + |2x_n|^{z-1}), & \\quad |x_n| \\le 0.5 \\\\
252250[2] : Meyer et al., New. J. Phys **20** (2019)
253251"""
254252function pomeau_manneville (u0 = 0.2 , z = 2.5 )
255- return DDS (pm_rule, u0, [z], pm_jac)
253+ return DeterministicIteratedMap (pm_rule, u0, [z], pm_jac)
256254end
257255function pm_rule (x, p, n)
258256 if x < - 0.5
@@ -290,7 +288,7 @@ function's documentation string.
290288[^Manneville1980]: Manneville, P. (1980). Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems. [Journal de Physique, 41(11), 1235–1243](https://doi.org/10.1051/jphys:0198000410110123500)
291289"""
292290function manneville_simple (x0= 0.4 ; ε = 0.1 )
293- return DDS (manneville_f, x0, [ε], manneville_j)
291+ return DeterministicIteratedMap (manneville_f, x0, [ε], manneville_j)
294292end
295293
296294function manneville_f (x, p, t)
@@ -313,7 +311,7 @@ Vladimir Arnold in the 1960s. [1]
313311[1] : Arnol'd, V. I., & Avez, A. (1968). Ergodic problems of classical mechanics.
314312"""
315313function arnoldcat (u0 = [0.001245 , 0.00875 ])
316- return DDS (arnoldcat_rule, u0, nothing , arnoldcat_jacob)
314+ return DeterministicIteratedMap (arnoldcat_rule, u0, nothing , arnoldcat_jacob)
317315end # Should give Lyapunov exponents [2.61803, 0.381966]
318316function arnoldcat_rule (u, p, n)
319317 x,y = u
@@ -345,7 +343,7 @@ This map illustrate the fractalization of the basins boundary and its uncertaint
345343 An obstruction to predictability, Physics Letters A, 99, 9, 1983
346344"""
347345function grebogi_map (u0 = [0.2 , 0. ]; a = 1.32 , b= 0.9 , J₀= 0.3 )
348- return DDS (grebogi_map_rule, u0, [a,b,J₀], grebogi_map_J)
346+ return DeterministicIteratedMap (grebogi_map_rule, u0, [a,b,J₀], grebogi_map_J)
349347end
350348function grebogi_map_rule (u, p, n)
351349 θ = u[1 ]; x = u[2 ]
@@ -375,7 +373,7 @@ u_i' = \\lambda - u_i^2 + k \\sum_{j\\ne i} (u_j^2 - u_i^2)
375373Here the prime ``'`` denotes next state.
376374"""
377375function nld_coupled_logistic_maps (D = 4 , u0 = range (0 , 1 ; length= D); λ = 1.2 , k = 0.08 )
378- return DDS (nld_coupled_logistic_maps_f, u0, [λ, k])
376+ return DeterministicIteratedMap (nld_coupled_logistic_maps_f, u0, [λ, k])
379377end
380378
381379function nld_coupled_logistic_maps_f (du, u, p, n)
@@ -409,7 +407,7 @@ The parameter μ should be kept in the interval `[0,2]`. At μ=2, the tent map c
409407[^Ott2002] : E. Ott, "Chaos in Dynamical Systems" (2nd ed.) Cambridge: Cambridge University Press (2010).
410408"""
411409function tentmap (u0 = 0.25 , μ = 2.0 )
412- return DDS (tentmap_rule, u0, [μ], tentmap_jac)
410+ return DeterministicIteratedMap (tentmap_rule, u0, [μ], tentmap_jac)
413411end
414412function tentmap_rule (x, p, n)
415413 μ = p[1 ]
@@ -442,7 +440,7 @@ The parameter β controls the dynamics of the map. Its Lyapunov exponent can be
442440At β=2, it becomes the dyadic transformation, also known as the bit shift map, the 2x mod 1 map, the Bernoulli map or the sawtooth map. The typical trajectory for this case is chaotic, though there are countably infinite periodic orbits [^Ott2002].
443441"""
444442function betatransformationmap (u0 = 0.25 ; β= 2.0 )
445- return DDS (betatransformation_rule, u0, [β], betatransformation_jac)
443+ return DeterministicIteratedMap (betatransformation_rule, u0, [β], betatransformation_jac)
446444end
447445function betatransformation_rule (x, p, n)
448446 @inbounds β = p[1 ]
@@ -478,7 +476,7 @@ The parameters σ and β are generally kept at `0.001`, while α is chosen to g
478476[^Cao2013] : H. Cao and Y Wu, "Bursting types and stable domains of Rulkov neuron network with mean field coupling", International Journal of Bifurcation and Chaos,23:1330041 (2013).
479477"""
480478function rulkovmap (u0= [1.0 , 1.0 ]; α= 4.1 , β= 0.001 , σ= 0.001 )
481- return DDS (rulkovmap_rule, u0, [α, β, σ], rulkovmap_jac)
479+ return DeterministicIteratedMap (rulkovmap_rule, u0, [α, β, σ], rulkovmap_jac)
482480end
483481@inbounds function rulkovmap_rule (x, p, n)
484482 α, β, σ = p
@@ -509,7 +507,7 @@ The default parameters are chosen to give a unique chaotic attractor. A double a
509507[^Skiadas2008] : "Chaotic Modelling and Simulation: Analysis of Chaotic Models, Attractors and Forms", CRC Press (2008).
510508"""
511509function ikedamap (u0= [1.0 , 1.0 ]; a= 1.0 , b= 1.0 , c= 0.4 , d = 6.0 )
512- return DDS (ikedamap_rule, u0, [a,b,c,d], ikedamap_jac)
510+ return DeterministicIteratedMap (ikedamap_rule, u0, [a,b,c,d], ikedamap_jac)
513511end
514512@inbounds function ikedamap_rule (u, p, n)
515513 a,b,c,d = p
0 commit comments