Skip to content

First try to use pkg extension #123

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Draft
wants to merge 5 commits into
base: main
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 21 additions & 2 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -8,31 +8,50 @@ ADNLPModels = "54578032-b7ea-4c30-94aa-7cbd1cce6c9a"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
JSOSolvers = "10dff2fc-5484-5881-a0e0-c90441020f8a"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
KNITRO = "67920dd8-b58e-52a8-8622-53c4cffbe346"
LLSModels = "39f5bc3e-5160-4bf8-ac48-504fd2534d24"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LinearOperators = "5c8ed15e-5a4c-59e4-a42b-c7e8811fb125"
Logging = "56ddb016-857b-54e1-b83d-db4d58db5568"
NLPModels = "a4795742-8479-5a88-8948-cc11e1c8c1a6"
NLPModelsJuMP = "792afdf1-32c1-5681-94e0-d7bf7a5df49e"
NLPModelsModifiers = "e01155f1-5c6f-4375-a9d8-616dd036575f"
PackageExtensionCompat = "65ce6f38-6b18-4e1d-a461-8949797d7930"
Percival = "01435c0c-c90d-11e9-3788-63660f8fbccc"
QuadraticModels = "f468eda6-eac5-11e8-05a5-ff9e497bcd19"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
SolverCore = "ff4d7338-4cf1-434d-91df-b86cb86fb843"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"

[weakdeps]
CaNNOLeS = "5a1c9e79-9c58-5ec0-afc4-3298fdea2875"
DCISolver = "bee2e536-65f6-11e9-3844-e5bb4c9c55c9"
FletcherPenaltySolver = "e59f0261-166d-4fee-8bf3-5e50457de5db"
NLPModelsIpopt = "f4238b75-b362-5c4c-b852-0801c9a21d71"
NLPModelsKnitro = "bec4dd0d-7755-52d5-9a02-22f0ffc7efcb"
RipQP = "1e40b3f8-35eb-4cd8-8edd-3e515bb9de08"
SolverBenchmark = "581a75fa-a23a-52d0-a590-d6201de2218a"

[extensions]
CaNNOLeSExt = ["CaNNOLeS"]
DCISolverExt = ["DCISolver"]
FletcherPenaltySolverExt = ["FletcherPenaltySolver"]
NLPModelsIpoptExt = ["NLPModelsIpopt"]
NLPModelsKnitroExt = ["NLPModelsKnitro"]
RipQPExt = ["RipQP"]
SolverBenchmarkExt = ["SolverBenchmark"]

[compat]
ADNLPModels = "0.4, 0.5, 0.6, 0.7"
DataFrames = "1"
JSOSolvers = "0.10, 0.11"
JuMP = "1"
KNITRO = "0.13.0"
LLSModels = "0.3.6"
LinearOperators = "2"
NLPModels = "0.19, 0.20"
NLPModelsJuMP = "0.11, 0.12"
NLPModelsModifiers = "0.6.2"
Percival = "0.6, 0.7"
QuadraticModels = "0.9.2"
Requires = "1"
SolverCore = "0.3"
julia = "^1.6.0"
2 changes: 1 addition & 1 deletion docs/src/benchmark.md
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@ using NLPModelsIpopt
selected_optimizers = JSOSuite.optimizers
# optimizers can solve general `nlp` as some are specific to variants (NLS, ...)
selected_optimizers = selected_optimizers[selected_optimizers.can_solve_nlp, :]
selected_optimizers[selected_optimizers.is_available, :] # optimizers available
is_available(selected_optimizers) # optimizers available
```

For the purpose of this example, we will consider 3 optimizers.
Expand Down
9 changes: 9 additions & 0 deletions ext/CaNNOLeSExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
module CaNNOLeSExt

using CaNNOLeS, JSOSuite

function minimize(::Val{:CaNNOLeS}, nlp; kwargs...)
return CaNNOLeS.cannoles(nlp; linsolve = :ldlfactorizations, kwargs...)
end

end
7 changes: 7 additions & 0 deletions ext/DCISolverExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
module DCISolverExt

using DCISolver, JSOSuite

minimize(::Val{:DCISolver}, nlp; kwargs...) = DCISolver.dci(nlp; kwargs...)

end
9 changes: 9 additions & 0 deletions ext/FletcherPenaltySolverExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
module FletcherPenaltySolverExt

using FletcherPenaltySolver, JSOSuite

function minimize(::Val{:FletcherPenaltySolver}, nlp; kwargs...)
return FletcherPenaltySolver.fps_solve(nlp; kwargs...)
end

end
5 changes: 5 additions & 0 deletions src/solvers/ipopt_solve.jl → ext/NLPModelsIpoptExt.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,6 @@
module NLPModelsIpoptExt

using NLPModelsIpopt, JSOSuite
# Selection of possible [options](https://coin-or.github.io/Ipopt/OPTIONS.html#OPTIONS_REF).
function minimize(::Val{:IPOPT}, nlp; kwargs...)
keywords = Dict(kwargs)
Expand Down Expand Up @@ -34,3 +37,5 @@ function minimize(::Val{:IPOPT}, nlp; kwargs...)
end
return NLPModelsIpopt.ipopt(nlp; keywords...)
end

end
6 changes: 6 additions & 0 deletions src/solvers/knitro_solve.jl → ext/NLPModelsKnitroExt.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
module NLPModelsKnitroExt

using NLPModelsKnitro, JSOSuite

# See https://www.artelys.com/docs/knitro/3_referenceManual/userOptions.html for the list of options accepted.
function minimize(::Val{:KNITRO}, nlp; kwargs...)
keywords = Dict(kwargs)
Expand Down Expand Up @@ -25,3 +29,5 @@ function minimize(::Val{:KNITRO}, nlp; kwargs...)
end
return NLPModelsKnitro.knitro(nlp; keywords...)
end

end
6 changes: 6 additions & 0 deletions src/solvers/ripqp_solve.jl → ext/RipQPExt.jl
Original file line number Diff line number Diff line change
@@ -1,3 +1,7 @@
module RipQPExt

using RipQP, JSOSuite, LLSModels, QuadraticModels

function minimize(
::Val{:RipQP},
nlp::Union{QuadraticModel{T0}, LLSModel{T0}};
Expand Down Expand Up @@ -60,3 +64,5 @@ function minimize(
end
return RipQP.ripqp(nlp; itol = itol, keywords...)
end

end
31 changes: 31 additions & 0 deletions ext/SolverBenchmarkExt.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
module SolverBenchmarkExt

using SolverBenchmark, JSOSuite
function SolverBenchmark.bmark_solvers(
problems,
solver_names::Vector{String},
solvers::Dict{Symbol, Function} = Dict{Symbol, Function}();
atol::Real = √eps(),
rtol::Real = √eps(),
verbose::Integer = 0,
max_time::Float64 = 300.0,
max_eval::Integer = 10000,
max_iter::Integer = 10000,
kwargs...,
)
for s in solver_names
solvers[Symbol(s)] =
nlp -> minimize(
s,
nlp;
atol = atol,
rtol = rtol,
verbose = verbose,
max_time = max_time,
max_eval = max_eval,
max_iter = max_iter,
)
end
return SolverBenchmark.bmark_solvers(solvers, problems; kwargs...)
end
end
Loading