Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 29 additions & 0 deletions docs/vllm_deployment_guide.md
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,35 @@ cd vllm/
pip install -e .
```

### AMD GPU Support
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It’s best to use ## AMD GPU Support; otherwise, this section will be considered part of the Common Issues chapter.

### Please follow the steps here to install and run MiniMax-M1 models on AMD MI300X GPU.
### Step By Step Guide
#### Step 1
Launch the Rocm-vllm docker:

```shell
docker pull rocm/vllm-dev:nightly

docker run -d -it --ipc=host --network=host --privileged --cap-add=CAP_SYS_ADMIN --device=/dev/kfd --device=/dev/dri --device=/dev/mem --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /:/work -e SHELL=/bin/bash --name vllm_minimax rocm/vllm-dev:nightly
```

#### Step 2
Huggingface login

```shell
huggingface-cli login
```


#### Step 3
Run the vllm online serving
Sample Command

```shell
SAFETENSORS_FAST_GPU=1 VLLM_USE_V1=0 vllm serve MiniMaxAI/MiniMax-M1-80k -tp 8 --gpu-memory-utilization 0.95 --no-enable-prefix-caching --trust-remote-code --max_model_len 4096 --dtype bfloat16
```


## 📮 Getting Support

If you encounter any issues while deploying MiniMax-M1 model:
Expand Down